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EXECUTIVE SUMMARY
This paper discusses security vulnerabilities and potential solutions for Advanced 
Driver Assistance Systems (ADAS). We introduce ADAS system architecture and 
present use cases. We further provide detailed threat analysis of two leading 
ADAS use cases: (1) lane departure warning and (2) adaptive cruise control. Based 
on threat analysis results we identify security problem areas and state security 
requirements for each. We devote the last part of this paper to ADAS security  
solutions that can meet identified objectives.

This study makes several key contributions to addressing ADAS security problems
• Establish critical needs to addressing security problems via detailed  

threat analysis

• Define main security problem areas for ADAS

• Identify challenges and requirements for securing ADAS control functions

• Establish the mission of securing E2E ADAS data path

• Define trust foundation for secure ADAS platforms

• Make recommendations for “ADAS security solution menu”

1. Introduction
Demand for Advanced Driver Assistance Systems (ADAS) is caused by desire to 
build safer vehicles and roads in order to reduce the number of road fatalities  
and by legislation in the leading countries. ADAS is made of the following physical 
sensors: radar, LIDAR, ultrasonic, photonic mixer device (PMD), cameras, and night-
vision devices—that allow a vehicle to monitor near and far fields in every direction 
and of evolving and improving sensor fusion algorithms that ensure vehicle, driver, 
passenger’s, and pedestrian’s safety based on factors such as traffic, weather,  
dangerous conditions, etc. Modern ADAS systems act in real time via warnings  
to the driver or by actuation of the control systems directly and are precursors  
to the autonomous vehicles of the future.
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There are several challenges to design, implement, deploy, 
and operate ADAS. The system is expected to gather accurate 
input, be fast in processing data, accurately predict context, 
and react in real time. And it is required to be robust, reliable, 
and have low error rates. There has been significant amount 
of effort and research in the industry to solve all these chal-
lenges and to develop the technology that will make ADAS 
and autonomous driving a reality.

In addition to functional requirements, ADAS must be  
secured from adversaries with malicious intent whose  
goal is to compromise the system and cause catastrophic  
accidents with loss of life and damage to property.

It has been shown both in academia and automotive  
industry that control system can be compromised via  
malicious attacks launched through various means, for 
example via DVD player, the ODB-II port,1,2 or even wirelessly 
via tire pressure sensors,3 as a result displaying to the driver 
wrong warnings3 or even causing fatality by remotely dis-
abling braking system on a vehicle while it is moving.1,2  
In addition to protecting the system from criminal actors, 
there is a bigger threat looming from nation-state  
sponsored cyber terrorism. 

In this whitepaper we argue that ADAS security should be 
considered as a fundamental non-functional requirement—
together with reliability, robustness, performance, and low 
error rates. We analyze vulnerabilities in a conceptual ADAS 
architecture via representative use cases. Based on the 
vulnerability analysis results we state security requirements 
and make suggestions on countermeasures against malicious 
attacks. We show that ignoring ADAS security compromises 
other design goals.

2. ADAS System Background
ADAS system provides assistance to the driver and improves 
driving experience. Its primary function is to ensure safety  
of the vehicle, the driver, and the pedestrians or bikers. ADAS 
could be used to save fuel costs by enabling platooning in 
which vehicles follow each other within close distance; it 
could warn when a vehicle swerves across the lane or it  
could apply emergency brake to avoid collision, etc. To  
function reliably, ADAS must be able to recognize objects, 
signs, road surface, and moving objects on the road and to 
make decisions whether to warn or act on behalf of a driver. 
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2.1. ADAS Example Usage Cases
ADAS system is considered as the advancement from driver 
assistant system (DAS). DAS is a system that informs and 
warns, provides feedback on actions, increases comfort,  
and reduces workload by actively stabilizing or maneuvering 
the vehicle. ADAS system is considered as a subset of DASs, 
with increased use of complex processing algorithms to  
detect and evaluate the vehicle environment based on  
data collected via a variety of sensor inputs. Figure 1  
demonstrates the spectrum of DAS capabilities available  
in production today; the capabilities considered as ADAS  
are highlighted with stars. The ADAS usage cases that re-
quire full power of real-time processing and intelligence are 
highlighted with full stars, whereas half-colored star marked 
usage cases are relatively more rudimentary ADAS cases.

2.2. ADAS Conceptual Architecture
To support ADAS functions the architecture must include 
modules for sensing, processing, intelligence generation,  
and decision making. Figure 2 is a generic view of what the 
ADAS system might look like. The overall system compro-
mises sensors of various types; a CPU-GPU combination to 
perform the sensor data processing, object identification, 
and early sensor fusion; a “Central Brain” CPU for performing 
sensor fusion from different sensor blocks, object tracking, 
vehicle control activities to interact with the actuation, and  
a diagnostics block. 

Figure 1. Spectrum of DAS and ADAS Functions
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This system is considered as a close-loop control system, where the vehicle control actuation actions are computed based  
on received data from sensors. And the outcome of the ADAS actuation actions is fed back in the loop as sensor input. All the 
computing units in ADAS of the vehicular system are generally referred to as electronic control units (ECUs). The sensing and 
actuation ECUs are relatively resource constrained units, compared with the central processor of ADAS.

One of the key advancements in ADAS design is the concept of “sensor fusion.” This is the process by which the internal pro-
cessing takes input from the multiplicity of external sensors and creates a map of possible impediments around the vehicle. The 
map then facilitates the computation that creates a series of possible actions and reactions through situational analysis. Figure 3 
shows an example ADAS-enabled vehicle with a collection of sensors to enable sensor fusion and actions. 

Figure 2. Conceptual Hardware Block Diagram for ADAS System

Figure 3. Example ADAS Sensors
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Sensor fusion and situational analysis can be done case 
by case for different ADAS functions and occurs at mul-
tiple levels. It is beneficial to have early fusion (determining 
conditions as early as possible) and a centralized processing 
“brain” (improving quality of detection and reducing CPU 
power consumption). Figure 4 demonstrates an approach 
where sensor fusion occurs in both the sensor processor 
and the central brain. With this design, the system provides 
a horizontal architecture that can support multiple ADAS 
applications in parallel. Such architecture is an advancement 
from vertical systems that only support individual ADAS ap-
plications case by case. We base our security analysis on this 
conceptual architecture.

Figure 4. Example Sensor Fusion in ADAS
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3. ADAS Security Problem Areas
Before looking into details of security threats, let us  
first examine, at high level, what are the major areas of  
concerns for ADAS system in dealing with hostile running  
environment and malicious actions by adversaries. In gen-
eral, any malicious actions that could cause ADAS system  
to behave outside its specification are referred to as threats 
to ADAS. And the interfaces that allow such threats to occur 
are referred to as attack surfaces. Now the key questions are: 
what is the specified behavior of an ADAS system, and how 
do attackers cause the system to misbehave? The answers 
to these questions lead to the discovery of three major ADAS 
security problem areas.
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Control System Security
As we discussed before, ADAS can be thought of as a  
close-loop control system. While in operation it must  
satisfy functional safety, efficiency, performance, and  
reliability requirements. We refer to this whole system  
behavior as “ADAS control system and processing” and  
make securing it our priority. 

Threats to the control function come from any actions the  
attacker could take, given their capabilities, to cause the  
system to act outside of its specifications. Any changes of  
the system properties that contribute to the violation of 
its safety goals may happen due to deliberate attacks. The 
security requirements to support safety goals should mainly 
concern establishing and maintaining functional integrity 
and other requirements. With further threat analysis and risk 
assessment, one could derive detailed security requirements, 
which will be discussed in Section 5.1.

ADAS Data Protection
In addition to attacking core functions of ADAS, the attacker 
could be motivated to attack the system to achieve other 
unexpected consequences by the original design. For example, 
the attacker could eavesdrop on ADAS data processing and/ 
or internal communication to gain access to ADAS data. Leak-
age of data to an external party other than for local control 
system consumption may also be an unexpected behavior of 
the system, therefore a second area of security problem for 
ADAS may come from ADAS data protection. Security system 
must ensure Confidentiality, Integrity, and Availability (CIA)  
of data collection.

The practice of recording data for accountability may be 
implemented by a “blackbox” system. Should the blackbox 
be implemented, the storage security would be an issue. Simi-
larly, integrity protected storage system would be required 
if the storage is used for collecting and storing other vehicle 
related information, such as object classifiers or maps. The 
specific threats are similar as seen in a typical storage system 
in the traditional computing world. Hence, in this whitepaper, 
we do not dedicate our focus on understanding threats in 
such systems, as well as the derived requirements on ADAS 
data protection. Nonetheless, there exist many studies in 
the literature that we could leverage. In this article, we derive 
security requirements based on existing threat studies and 
certain solutions can be leveraged to address security issues 
for data protection and access control.

Secure Lifecycle Management
Deploying and maintaining intended modules in the ADAS  
is as important as any other protection mechanism for ensuring 
ADAS system behavior according to the specifications. This  
process is typically referred to as lifecycle management. 
Changes to the ADAS system could be triggered by:

• System upgrade/algorithm updates

• Software patch

• Installation of new components for additional functions

• Hardware recovery and replacement

• System recovery due to compromise

• Root of trust update due to authority updates in  
the administrative domain

• Cryptographic algorithm and key updates due  
to cryptosystem migration or other reasons

ADAS is especially vulnerable to malicious actions  
during updates because some interfaces which are  
not normally available become open to external data or  
external operations. Furthermore, ADAS system consists  
of multiple modules. Any changes to any one of the modules 
will require the system to re-establish trust relationships 
between these modules so that they can reliably exchange 
data and commands. 

Lifecycle management security is not a new problem for 
ADAS system. Any computing system needs to deal with 
changes to ensure that the system can “start secure—run 
secure—stay secure.” The same problem in ADAS system  
is facing extra challenges:

• Secure update on control system immature in auto  
industry and ecosystem  
Manual update at a garage or repair shop by trained  
professionals is a common practice. Update process  
usually requires proprietary tools and labor intensive  
work. Although there is a new trend of attempting to  
enable remote update via standardized processes to  
relief the labor cost the procedure is still not mature 
enough to be pervasive. This is especially true for the  
updates that require intense verification on control  
system integrity.
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• Small scale ECUs to meet security primitive 
requirements for secure update  
Updating relatively large scale computing platforms is 
straightforward since there are available system update 
and recovery technologies and services suitable for such 
platforms. ADAS, however, may have smaller scale micro-
controllers for sensors and actuators. Such small scale 
platforms may not have sufficient cryptographic or security 
primitive support. Hence, the challenge is to achieve the 
same security objectives with lightweight system update 
security technology.

• Long lifetime vs. limited cryptographic strength  
Control systems like the vehicles typically have long life-
times. Cryptographic solutions in the current computing 
world, however, have relatively shorter lifetimes. Hence, 
during the ADAS system lifecycle, there may appear the 
need to update the ADAS system with stronger and new 
cryptosystem. This problem in the traditional computing 
system is not critical given that most of the devices must 
be operational only for a few years. Careful design and 
analysis is required for updating the cryptographic system, 
because it effectively serves as the basis of trust for every 
security function. Compromising the root of trust will  
surrender control to attackers.

4. ADAS Control Function Threat Analysis
For conducting threat analysis, we need information on  
1) target usage case; 2) architecture for the use case;  
3) expected adversarial model. The analysis methodology  
is a commonly used approach where we decompose the  
system to assets and examine every interface exposed by 
each asset to understand all possible behaviors with all  
possible interface parameters and values.

4.1. Adversarial Model
Let’s first define expected adversarial model in our analysis. 
We use a typical adversarial model, the same for analyzing 
threats to Intel’s system product and technology. ADAS sys-
tems share many properties as a typical computing system. 
Hence, the adversarial model for the computing system is 
mostly applicable to ADAS system. We assume that ADAS 
system should worry about the attackers who can launch 
simple hardware attacks with the capability of “university 
challenge.” This means:

• Expected attacker capability: Simple hardware attacker

 – Has reverse engineered all firmware, software

 – Can modify and replace all firmware, software

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged  
malware onto any micro-processor that communicates 
through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in alternate  
environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K 
part/equipment/computation to develop tools to attack 
many vehicles

Compared with the typical computing system, the difference 
in ADAS system is mostly on the physical aspect, besides the 
cyber actions and capabilities. For instance, the ADAS function 
used for controlling operation of the vehicle physically offers 
opportunities to attackers to launch their actions that may lead 
to consequences on control systems, on actuators, and on 
other ECUs that have mechanical impact to the vehicle. On the 
other hand, the attacker could also potentially launch attack 
via physical actions and eventually cause cyber or physical 
consequences. In our analysis, we attempt to cover both  
cyber and physical aspects of possible attacking actions.

4.2. Use Cases for Threat Analysis
Two applications are used in the study:

• Lane Departure Warning (LDW) 

• Adaptive Cruise Control (ACC)

LDW use case is for vehicle lateral control, where warning 
is presented to driver if the ADAS system detects that the 
vehicle is departing from the current lane. The main function-
ality by the sensors and data fusion is to recognize the lane 
lines and predict the vehicle’s driving direction based on the 
detected trajectory. 

ACC use case is for vehicle longitudinal control. It manages  
the vehicle speed adaptively based on the detection of  
distance with leading vehicle, the current speed, the  
road condition, and prediction of leading vehicle’s speed 
change. In this application, the ADAS system continuously 
generates actuation command to control throttle ECU  
or brake ECU accordingly.

These two applications use similar ADAS architecture, with 
some differences on required input sensing data and output 
data format and purpose. Their output difference is clear: 
warning only or take direct actuation. Potential failure in 
computing and generating corresponding output in these  
two cases may have dramatically different consequences. 

These two use cases can represent several ADAS functions 
that improve driving experience and support safety. Our 
future work will extend the threat analysis on other use  
cases that facilitate parking or improving lighting and sight, 
as illustrated in Figure 1.
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4.3. Summary of Threat Analysis Results
Detailed threat analysis is documented in Appendix A and 
Appendix B. Here, we provide a summary of threat analysis 
results and insight on high risks.

 Study summary: entire data path from initial sensing to 
final actuation is vulnerable. 

Let’s examine where the vulnerable assets and exposed in-
terfaces are. Main attack surfaces, shown in Figure 5, include 
exposed interfaces and are broken by vulnerable assets 
(internal or external). Attackers have a range of options, they 
can, for example, generate false data on a sensing platform, 
modify data on the internal communication channel, gener-
ate undesirable ADAS output data on the fusion brain plat-
form, change output data on the internal communication to 
the actuation ECUs, manipulate firmware and software on the 
output platform to make the system fail.

Our analysis reveals that there is a set of data properties  
especially vulnerable to manipulation. Beyond the basic at-
tack on data values, as summarized in Figure 5, vulnerabilities 
exist if syntax, semantics, timing, availability, and correlation 
are manipulated. Data syntax refers to some of the properties 
associated with the content, for example, output from LDW 
could be played via audio device where volume of the output 
warning is defined as data syntax. Change of audio volume to 
undesirable level is a realistic threat to LDW function. 

Given the diverse types of data being generated and  
processed in the ADAS, not only forged data or incorrect  
data content has impact to the system, but also whether  
the data is in time for consumption, or available at all are 
intrinsically important issues for ADAS control system.  
Missing data or delayed data may cause the system fail to 
generate appropriate intelligence, or respond to situations  
in real time. Furthermore, the sensing fusion algorithms rely 
on potentially multiple streams of data. Some algorithms 
have requirement that streams of input data are received  
and processed in correlated sequence. Hence, attack  
actions that can successfully change the correlation to  
further manipulate the behavior of sensing fusion.

In terms of undesirable consequences, as summarized  
in Figure 5, the compromised ADAS system could cause  
false positive or false negative warnings or actuation actions. 
In false positive case, the ADAS system could generate warn-
ing or take unnecessary actions on vehicle control system to 
respond to falsely computed “need to warn or take action” 
situation, whereas the actual driving condition may be still 
normal. On the other hand, the false negative outcome  
could cause the system fail to respond to potential danger 
happening on the road. Furthermore, the control decision 
could still be relevant, but only relevant to the past condition, 
a little too late current. All these undesirable outcomes could 
potentially lead to unsafe driving consequences, cause a 
collision, or even loss of human life. These consequences  

Figure 5. Summary of Threat Analysis Results
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are very specific to the vehicle control system and defeat  
its primary design goal: improving driving safety.

Other consequences may include failure in enabling or  
disabling ADAS control. In addition, frequent failures in  
reporting accurate driving conditions can cause user’s mis-
trust of the ADAS system and turn off the system all together. 

ADAS system can also be compromised to defeat the goal  
of improving driving experience. For instance, in the case  
of ACC, to maintain a proper speed, the vehicle may be ma-
nipulated to speed up or slow down suddenly, or repeatedly 
take these actions. Such outcome is apparently not desirable 
to the driver and to passengers. 

5. ADAS System Security Requirements
Given the threat analysis results and insights in highly  
vulnerable parts of the system, we examine security and 
system requirements that will provide guidance in designing 
security solution for ADAS.

5.1. Control System Security Requirements
Security requirements for ADAS control system are primarily 
derived from threat analysis results. We take LDW and ACC 
as case studies, and focus most efforts on understanding 
how attackers could launch the attacks that could cause the 
system to act outside its control system specification. That is, 
the system that achieves the control system objectives.

Therefore, the overall security objective on ADAS control 
system is to:

 Defend the ADAS control function against malicious  
attacks, so that the ADAS control function can achieve the 
expected specified behaviors: delivers warning or takes 
necessary actuation actions in real time that accurately 
reflect the current driving condition and according to  
reasonably accurate prediction of potential danger.

To support this objective, the secure ADAS control system 
should satisfy the following major requirements.

• R1. Availability The system and functions should ensure 
that data and processing capability are available to satisfy 
the needs by ADAS fusion and intelligent actions.

• R2. Real Time Delivering of warnings/actions should  
be in real time to be useful. 

• R3. Accuracy Warnings and actions correctly  
and accurately reflect the current driving condition 
and accurate enough prediction of potential  
incidents on road.

• R4: Reliability System is able to predict potential  
dangerous conditions with high probability and low  
error rate; Ensuring such capability when system is  
under attack.

These requirements are fundamental for a secure ADAS  
control system. They shall be used guidelines when design-
ing and implementing the ADAS system. In the complete 
ADAS data path, assets that satisfy these requirements 
include all types of data, sensing modules, actuation mod-
ules, any processing modules, and internal communication. 
Further decomposition is needed when it comes to the need 
to design solution to protect a specific module or a specific 
set of modules in the ADAS system.

On sensing modules, initial calibration and on-going operation 
are the focus. Sensing data is required to be available in real 
time, accurately reflect the sensing condition, and reliable to 
tolerate most of unexpected conditions. 

On actuation modules, similarly, the focus is on initial calibra-
tion and on-going operation. In particular, it is required that 
incoming actuation commands are processed in real time 
and accurate manner. The actual actuator should execute 
the commands accurately, fast, and reliably under various 
conditions. The actuation function should be available and 
continuously in correct operation status. 

On internal processing modules, software and hardware  
protection should be in place to ensure that the supporting 
data is 1) available; 2) not delayed or rushed; 3) content is 
authentic and integrity protected; 4) syntax is correct; and  
5) correct correlation in multiple sensing streams is main-
tained. To accomplish these objectives, the major software 
and hardware components for any internal processing  
module should:

• Provide boot time system integrity protection against  
malicious software modification

• Provide run time execution protection against  
malicious modification

• Ensure processing latency protection against malicious 
system jamming or denial of service

On internal communication, to protect data properties, the 
protocols should ensure integrity, authenticity, availability, 
freshness, and timeliness of any data internally communicated. 
These requirements can be used to further derive specific re-
quirements on functions for internal communication, including 
managing communication keys, handshakes, communication 
buffering, and actual data distribution.
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5.2. Lifecycle Management Security Requirements
Like other secured systems, the functions and the archi-
tecture that support ADAS functions should start secure, 
run secure, and stay secure. Security from cradle to grave 
is a critical requirement to maintain ADAS lifecycle integ-
rity. ADAS system consists of multiple components and the 
internal communication. This makes security of lifecycle 
management more challenging compared with a traditional 
computing system or any other systems that only deal with a 
single main processing module. In this section, we pay close 
attention on security management of ADAS ensemble and 
modules that specific for ADAS or automotive. Readers can 
refer to literature for secure lifecycle management require-
ments for stand-alone computing modules.

5.2.1. Start Secure
Primary goal at this stage is to establish secure provisioning 
of ADAS components, and the trust relationships between 
components. Below are some key requirements:

• Establish Root of Trust (RoT): A trusted owner of the entire 
system to be established and held accountable of ADAS 
system configuration and management. This common RoT 
is the foundation for ADAS components to establish secure 
relationships and communication keys as required by 
ADAS operation.

• Deploy trustworthy HW and SW trust modules: It is  
required that the initially provisioned system hardware  
and software modules are trustworthy and are the  
authentic version by the authority. The system is also  
required establish the authority as the trusted party,  
and provide mechanisms to allow third party to gain  
proof that the system is running trustworthy modules.

• Establishing integrity policies among components:  
There should exist policies and mechanisms that allow 
each individual component to establish and prove its trust 
status to other components, as well as for the components 
to establish and prove their trusted status as a whole  
architecture and group.

5.2.2. Run Secure
Once the ADAS system starts to run, the following are some 
high level requirements. 

• Invoke trusted system only: Upon system boot, only the 
provisioned trusted hardware and software can be booted. 
Any forged components should be detected and prevent 
from loading into the system.

• Validated input only: Mechanisms should be invoked here 
to validate the input. In particular, there are interfaces 
exposed externally to acquire input from physical world. 
Mechanisms that are used to protect input at these inter-
faces are still in their infancy.

• Detect runtime attacks: It is required that system should  
at least detect attacks when they happen in the system.  
To do this, the system is required to generate information 
of system status that differentiates between “normal”  
conditions vs. “under attack” conditions.

• Prevent runtime attacks: A stronger requirement for  
system to “run secure,” is to invoke mechanisms that  
prevent the system from being attacked at runtime.  
Solutions that satisfy this requirement may be built-in 
design in the system architecture, or additional security 
mechanisms/protocols that protect the operation  
and data.

5.2.3. Stay Secure
Changes occur in ADAS system with respect to individual 
components and managing the ADAS trusted ensemble. 
Whether it is about updating/patching hardware and soft-
ware on individual components, or on updating trust rela-
tionship among group members, the following are the high 
level requirements to be satisfied in order to maintain the 
trusted ADAS ensemble.

• Integrity protected

• Authenticated source to provide update

• Update with authorized modules only

• Freshness in update process

• Proper trust foundation re-establishment on  
updated components

• Group-based authenticity and integrity protected

6. Secure End-to-End ADAS Data Path
This section offers some thoughts on how to design and  
develop solutions to support ADAS security requirements. 

Given our analysis of threats and security requirements,  
the overall goal for securing ADAS function has emerged:  
ensuring protection of data collection, processing, and 
control system execution for ADAS use cases. We are in the 
mission of securing the end-to-end ADAS data path: from 
collection to final consumption. Security solutions should  
be designed to secure ADAS path with four major areas of 
concerns: 1) secure Real-time Sensing and Input, 2) internal 
data processing, fusion, and decision making, 3) trustworthy 
and reliable output, and 4) trusted internal data dissemina-
tion. Furthermore, lifecycle management issues will be  
addressed together with control system security in our  
solution discussion. 

Note 1: The discussion on securing diagnosis and auditing 
functions that require separate architecture from main ADAS 
system and are considered out of scope for this document. 
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Note 2: We don’t necessarily limit ourselves in a specific  
solution space. As general discussion, all solution  
spaces—hardware, software, firmware, system,  
networking, and services—are under consideration.

6.1. Summary—Solution Areas
To secure the end-to-end ADAS data path, the main solution 
areas should concentrate on following five areas:
1.  Common trust basis for computing platform

2.  Securing sensing

3.  Securing actuation

4.  Securing internal processing

5.   Securing ADAS ensemble (trust management  
and communication)

Their relationships can be described at high level,  
as illustrated in Figure 6.

To handle input, or output, or internal processing, any com-
puting platform should have a set of basic security features 
that establish basic trust on these computing platforms. 
Beyond this basis, each computing platform may be required 
to enable additional security solutions that meet specific 
security and functional requirements for input, output, or 
internal processing respectively.

As illustrated in Figure 6, for sensing ECUs, the primary tasks 
for security solution are protected sensing and trustworthy 
communication to distribute sensing information to con-
suming components in the ADAS system. For actuators, the 
ADAS specific security protection is trustworthy actuation, 
and communication for receiving actuation commands and 
other management messages. For main ADAS main fusion 
platform, the center of the solution stack is on trusted data 
fusion processing. 

Figure 6. Summary of ADAS Security Solution Areas
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Furthermore, the trust relationships between these platforms 
and how they establish secure communication to support 
security requirements on data flows are also critical. In this 
area, there are key management issues among platforms, 
and issues of securing data paths and channels. To facilitate 
trusted ensemble management, there should be a module 
to manage the ADAS group. Here, we hypothetically put this 
functionality on the central fusion platform, given its unique 
position that allows it communicate with every other compo-
nent in the ADAS system. This function could also be enabled 
by a specially designed module as a completely separate 
component in the system.

In the rest of this section, we discuss each solution area in 
more detail. Again, we mainly focus on how each component 
in the system can leverage security technology to satisfy 
security requirements for ADAS control system and lifecycle 
management. In some of the areas, the existing security tech-
nology needs to be re-engineered or re-designed to meet 
ADAS requirements. 

6.2. Secure ADAS Computing Platforms
Computing platforms in ADAS include sensing platform, the 
ADAS main processing platform, and the platforms for actua-
tion. All these platforms should establish a set of primitives 
as trust foundation for supporting ADAS security operations. 
Figure 7 demonstrates these primitives at the conceptual 
level. Note that the actual instantiation of these primitives 
is case by case depending on the target platform or micro 
controller. Also, this is a demonstrative security profile. We 
do not require that every ADAS component to support all 
of these primitives. This is especially the case for resource 
limited micro controllers. Nonetheless, for the completeness 
of discussion, it is important that the trust foundation covers 
major areas of issues for protecting basic functions that an 
ADAS component relies on.
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Figure 7. A Menu for Security Ingredients for ADAS  
Computing Platform
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In summary, a platform is responsible for four major security 
goals in order to support ADAS functional security.

Goal #1: Establish and Maintain Platform Integrity

Goal #2: Support Secured Update

Goal #3: Protect ADAS Processing and Operations

Goal #4: Protect Data Communication

Establish and Maintain Platform Integrity 
Platform integrity is the basis of trust for the platform. In this 
category, the platform should enable primitives to form a 
trusted computing base: trusted platform module (TPM) or 
equivalent component, HW root of trust, secure IDs, secured 
storage, protected crypto engine. Based on these primitives, 
other basic security functions can be established, including 
secure/verified boot, attestation of system and firmware. 

Support Secured Update 
The platform should have capability to continuously watch 
itself for integrity protection. In the case of corruption, on 
either BIOS, firmware, OS, or on software, the authenticated 
recovery technology should be invoked to ensure the system 
can regain its integrity with the authenticated image. Further-
more, the trusted FW/SW update technology is part of trust 
foundation to ensure system can be securely patched.

Protect ADAS Processing and Operations 
Protection on ADAS function operations on the platform is 
needed to achieve security requirements R1—R4. The execu-
tion integrity is the first priority. Furthermore, internal data 
structure and buffered data should be protected from mali-
cious tempering. For this purpose, the security foundation 
can provide primitives for boot time and run time execution 
protection. Example primitives could include secure/verified 
boot, secure storage, protection memory for execution isola-
tion, and virtualization.

Protect Data Communications 
To ensure strong protection on internal communication for 
ADAS data, one could enable technology to protect channels 
directly. This may include I/O protection on platform and 
system, as well as the secured network stack support. Fur-
thermore, the security protocol should be in place to ensure 
that data transportation satisfies the requirements: authen-
ticity, integrity, freshness, completeness, and timeliness. The 
communication driver should be operated in the protected 
execution environment with support of HW root of trust and 
secure identities for necessary cryptographic operations 
and validations. Also, the networking buffer operated by the 
driver should be in a protected memory region to prevent it 
from being malicious tampered. 

6.3. Intel ADAS Platform Security Foundation
Intel is uniquely positioned to provide full hardware, firm-
ware, and software support to ADAS trusted foundation.  
Intel continues to enhance systems so they run more  
securely. A key component of this approach is providing more 
robust, vulnerability-resistant platforms. Security features 
are embedded in the hardware of Intel® processors, some  
of which will be deployed and leveraged in future ADAS  
systems. The following is some sample technology that  
combines the hardware strength from Intel® platforms and 
comprehensive software security solutions from McAfee,  
offering great potential to enable strong ADAS E2E solutions.

Intel® Boot Guard for secure boot 
Intel® architectures provide temper-resistant hardware  
modules, such as authenticated code module (ACM)-based 
secure boot that verifies a known and trusted BIOS is booting 
the platform. It is the foundation of trustworthy system boot 
and execution.

Intel® Platform Protection Technology with BIOS Guard 
BIOS Guard supports hardware-assisted authentication  
and protect against BIOS recovery attacks, along with other 
platform protection technology, ensuring fundamental  
platform protection.

Intel® Platform Protection Technology with Platform  
Trust as basis for ADAS key management 
Platform Trust provides integrated solution for secure  
credential storage and key management. This feature may be 
utilized for enabling secure ADAS ensemble key management 
and serving as the basis for trusted ADAS communication.

Intel® Trusted Execution Technology (Intel® TXT)  
enhancing platform security 
To protect against attacks toward hypervisor and BIOS,  
firmware, and other pre-launch software components,  
Intel® Trusted Execution Technology (Intel® TXT) provides 
hardware-based technology to establish a root of trust 
through measurements when the hardware and pre-launch 
software components are in a known good state. 

12

Advanced Driver Assistant System: 
Threats, Requirements, and Security Solutions



Hardware-Assisted Intel® Data Protection Technology 
With Intel® AES New Instructions (Intel® AES-NI), Intel®  
Secure Key instruction, and Intel’s Digital Random Number 
Generator (DRNG), users gain combined value of solid  
cryptographic foundation support from Intel platforms.

Intel® Virtualization Technology (Intel® VT) securing  
ADAS workloads 
On shared virtualized hardware, a set of ADAS workloads  
can co-locate while maintaining full isolation from each other, 
freely migrate across infrastructures, and scale as needed. 
Intel® Virtualization Technology (Intel® VT) provides hardware 
assist to virtualization software, eliminating performance 
overheads, and improving security.

Intel® Software Guard Extensions (Intel® SGX)  
for targeted ADAS execution protection 
With a new set of CPU instructions, Intel® Software Guard 
Extensions (Intel® SGX) could provide ADAS application capa-
bility to set aside private region of code and data, allowing  
application to protect sensitive data from unauthorized 
access or modification by rogue software, or enabling the 
platform to measure ADAS application’s trusted code and 
produce a signed attestation.

TrustLite: Lightweight Trusted Execution Protection  
Technology4 for small ECUs in ADAS 
The technology developed in Intel Labs to enable  
protection on execution on very resource-constrained  
SoCs or platforms. Potential protection on every small  
ECUs (sensing, processing, or control) become possible  
with TrustLite,4 enabling Secure Loader, Secure Exceptions/
IPC, and Lightweight Isolation Execution.

McAfee Deep Defender and DeepSAFE defending  
malware attacks 
Anti-malware solutions work with the Intel hardware  
features to run beyond the operating system to detect  
covert stealth attacks.

McAfee Embedded Control to protect fixed-function  
ADAS modules 
Fixed-function modules, including ADAS fusion brain plat-
form are protected against any unauthorized change on the 
application with McAfee Embedded Control technology.

Intel is thriving to develop platform protection foundation 
across various form factors, making E2E ADAS system pro-
tection possible. The rest of this section discuss specific  
additional treatments for secure sensing, actuation, data  
fusion, and ensemble management.

6.4. Secure Sensing
Sensors are at the starting line of the ADAS data path. The 
sensing input has critical impact on overall correct operation 
of ADAS functions. Leveraging the common trust founda-
tion, one can ensure that the smart sensing platform satisfies 
the requirements and enables a trusted computing base for 
ADAS sensing function, and secured sensing data communi-
cation. For the platform that supports smart sensing, there 
are few issues that require special attention and treatment.

• Lightweight Security Mitigation 
The variety of sensing platforms demands that the security 
solutions should be customized to be suitable for the tar-
get platform resource constraints and cost limit. For some 
of the lightweight sensors, the full protection package as 
described in Section 6.2 is not feasible. Tradeoffs between 
cost and just enough security are needed. 

 For small scale micro controllers, the trusted computing 
base may be as small as a protected memory region for 
sensing execution. To minimize the complexity, the system 
could be required to support only a static version of the 
sensing algorithm firmware. No other software or firm-
ware can be inserted to the system without authorization. 
Such concept can be realized by an embedded controller 
whitelisting solution. Furthermore, the cryptographic  
support of small scale embedded controller may be  
simplified as well. The goal, is to support “just enough”  
for customized protection on the sensing platform. 

• Trusted Graphics Processing 
Some of the sensing platforms used in ADAS require 
powerful graphics processing. For instance, the front-view 
and side-view cameras operate to capture frame streams 
at high frequency in real time and generate initial graph-
ics models, and output to main ADAS processing platform. 
To meet the performance requirement, the platform may 
integrate a GPU to facilitate demanding graphics process-
ing. In such architectures, the additional care of security 
is needed on GPU processing and data paths to ensure 
authenticated data flows between GPU and CPU, as well  
as the trusted execution environment support on GPU.  

• Sensing Integrity Protection 
Smart sensing platforms interact with physical environment 
directly. Trusted ADAS operations rely on authentic, com-
plete, and fresh source of information, which is the main task 
of sensors in ADAS. The challenging objective is to provide 
sensing integrity technology that can ensure the generated 
models by the sensing platform accurately and correctly re-
flect current physical condition in real time. This is, currently, 
a technology gap to be filled with further innovation.
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6.5. Secure Actuation
The secure actuation platform is on the final consuming phase 
of ADAS data path. Similar to sensing platform, actuation 
ECUs could leverage the common trust foundation for target 
security requirements. For the platform that supports reliable 
actuation, there are few issues that require special attention 
and treatment. Some of the issues are similar ones that the 
smart sensing platform faces.

• Lightweight Security Mitigation 
Actuation platforms are typically small scale and support 
singular functionality. For these smaller scale controllers, 
the full protection package as described in Section 6.2 
is not feasible. Tradeoffs between cost and just enough 
security are needed. Again, the minimized trusted comput-
ing base, as required for small sensors, is also required for 
small scale actuation platforms.  Hence, lightweight cryp-
tographic engine and embedded controller whitelisting 
solution are of special consideration to support lightweight 
security mitigation on actuation.

• Actuation Integrity Protection 
Actuator ECUs manipulate control mechanics of the vehicle 
directly. Taking authentic input command and making sure 
the execution is faithful and timely are critical to the overall 
ADAS system security and reliability. Any failure of actua-
tor ECUs could have catastrophic and fatal consequences. 
While most actuator ECUs are implemented to satisfy 
highest safety requirements, we need to enable security 
protection on these ECUs so that possibility of triggering 
failures cannot increase when the ECU becomes the target 
of malicious attack.

 Here, the challenge of ensuring integrity protected actua-
tion has not been fully met, which remains a technology 
gap to be filled with further innovation.   

6.6. Secure ADAS Main Data Processing
As the main “brain” of ADAS system, the ADAS main pro-
cessing platform demands full security protection. It is the 
best practice to enable strongest security protection on this 
platform given its critical function of data fusion. The good 
news is that the target platform is relatively more powerful 
than sensors and actuators. Therefore, a full set of security 
primitives can be made available on the main platform for  
integration to ADAS internal data processing protection. 
There are three particular considerations on main platform 
worth further discussion.

• Maintain Functional Simplicity 
As powerful as it should be for processing high volume  
of data in real time and generate accurate models from 
multiple data streams, the main ADAS computing plat-
form in fact supports relatively less complex functionality: 
generate control commands to manage vehicle operation, 
given current driving condition. Unlike a typical computing 
platform in IT world (e.g., desktop, laptop, or smartphone), 
the ADAS computing platform only supports a few algo-
rithms and a few ADAS use cases. 

 With this observation, it is important for the ADAS main 
computing platform to maintain its simplicity. The security 
technology that ensures only a few authorized applica-
tions, such as whitelisting, can be invoked. And unauthor-
ized installation or modification of the ADAS application 
software should be detected and denied. 

• Protecting Real time Operating System and Software 
Huge work loads of ADAS main platform and the real-time 
reaction requirement could drive the system architecture 
to be supported by a real-time operation system. This 
means, the security ingredients that are traditionally tied  
to a specific operating system should be re-engineered 
or re-designed to be suitable for the real-time operating 
system and software. Example of such technology may 
include boot time/run time integrity protection, attestation, 
anti-malware solutions, and trusted recovery technology.

• Multi-interface Protection and Isolation 
The main ADAS computing platform is situated in the 
unique position in the vehicular control system that it has 
various interfaces that essentially connect to every parts 
of the ADAS system, from user interface, physical sensing, 
and to passing commands to ECUs. The more interfaces 
it has, the higher probability that the system may be at-
tacked. Therefore, protecting each interface, as well as 
isolating these interfaces are critical to the system to have 
any hope of maintaining its integrity. On the main ADAS 
computing platform, an integrated isolation solution,  
such as “Trusted Execution Environment + Protected Data 
Path” should be carefully designed and implemented.  
Additional challenge in this task is that the resulting solu-
tion has to also meet the “minimized latency” requirement 
as mandated by the real-time system.
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6.7. Secure Connected Ensembles
The security system for intra-vehicle data communication 
for ADAS function consists of three components:
• Integrity assurance of communicating modules

• Key management that establishes trust between modules

• Secure communication protocol

Integrity Verification 
The integrity of platforms serves as the basis for establishing 
trusted channels between them. Here the local attestation 
or integrity verification solution is required to establish that 
the modules maintain their integrity of the system. The integ-
rity demonstration to modules serves as the basis of trust for 
further establishing protected channels. 

Furthermore, if there is a need that a group of modules to 
establish trusted communication, the basis of trust among 
them could be established via a group-based attestation  
solution. There are some technology in the literature, could 
be used as the basis for constructing group-based attesta-
tion. Yet, to our best knowledge, this is an open challenge  
for securing ADAS group.

Secure Communication Protocols 
For data distribution, we need to enable trusted data paths 
across platforms in the ADAS architecture. As identified 
in threat analysis, the primarily concerned data channels 
are mostly bi-directional from the main ADAS processing 
platform to all other platforms including: smart sensing 
platforms, platform for user input, ECUs for status report 
and actuation control. The primary issues for protecting data 
flows are the data properties that directly impact functional 
goals of the entire ADAS control system: availability, real-
time, reliability, and accuracy.

Supporting secure communication among ADAS modules  
is a non-trivial problem. As demonstrated in threat analysis, 
given the expected adversarial model, communication  
channels can be fully under control by adversaries. To 
protect data flows on these channels, security protocols are 
required. Security primitives such as HW root of trust, secure 
identities, and secured cryptographic engines are required  
to support cryptographic operations and validation by the 
secure communication protocol. In addition, the complexity 
of supporting secured communication comes from two  
issues: diverse channel types and diverse data flows.

For security design, different layers of network stack have 
their own security issues and suitable solutions. In ADAS 
system, there exists diversity of communication channels: 
Ethernet, CAN, FlexRay, and other proprietary channels.  
Different type has its own security issues. And existing  
solutions are different in terms of the technology maturity. 
For instance, for Ethernet links, existing TCP/IP stack and 
their security countermeasures could be suitable to secure 
communication. On the other hand, the CAN protocol is 
currently still vulnerable to malicious attacks and the solu-
tion is still under development in the standards groups and 
by industrial consortia. Here, the main issue with enabling 
secure communication in ADAS system is primarily on ensur-
ing interoperability, so that modules from different vendors 
could be easily integrated to construct secure intra-system 
communication in an ADAS system.

The communication protocols may not be always pairwise 
between modules. Depending on the ADAS use case, there 
could also be group-based communication. For instance,  
in the case of multiple sensors serving together for ACC  
function in ADAS, there may be needs to ensure multiple 
front-view cameras work together to ensure reliable  
modeling of front view road condition. There may be group-
based communication flow among these cameras, the corre-
sponding sensing platform(s), and the main ADAS processing 
platform. That means security protocols should be designed 
and deployed among these modules that satisfy specific  
requirements by such group communication workloads. 
Hence, individual modules in ADAS system should provision 
and invoke these additional components that support data 
flow protection, whether it’s pairwise based or group base,  
or any form of relationship.

Key Management 
To support secure communication protocol, the secure com-
munication sessions should be established. The goal of key 
management is to establish session keys or the keys used to 
protect the communicate channel between parties. In ADAS 
system in general, the communication is required to support 
data availability, freshness, integrity, and authenticity. Hence, 
the keys used to achieve these goals should be established 
properly before the modules could engage with the secure 
communication protocol for exchange data. The property of 
these keys depends on the choice of target security protocol.
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The basis of establishing keys is from the trust relationship between the modules. The trust relationships should be repre-
sented by the security credentials that can authenticate the modules. In addition, the binding of the module’s current status 
with its authentication credentials could be required to establish the trust. To achieve this goal, the system needs to utilize the 
integrity verification function. Such verification may be required to be mutual: mutual authentication and mutual attestation. 
Furthermore, the group-based authenticated communication requires group-based trust relationship, hence requires member 
authentication in group and group-based attestation.

Technology foundation in this area exists. The suitable solutions for ADAS should be designed to meet the architectural  
requirements and specific communication security requirements.

7. Conclusion
This paper details the security issues that directly impact the ADAS system functional safety goals. Key security issues are 
identified via threat analysis case studies. Security requirements are derived from every parts of the ADAS architecture. Key 
security objectives are defined to support ADAS control system integrity, data protection, and lifecycle management. Various 
pieces of the security architecture and solutions are identified that can be put together to protect the vehicle’s operation with 
ADAS system. There are many architecture specific details to be worked out. More learning comes from actually doing 
experiments. Further work is along with a few specific directions:

1.   Further exercise and experiment for a specific ADAS architecture; engineering work to enable ADAS security solutions, 
advancing the secure ADAS system to be reality.

2.  Proof-of-concept and experiments:

a. Integration of primary security technology with a target ADAS use case.

b. Validate effectiveness of solutions for control functional safety.

c. Evaluate performance overhead and impact on functional correctness.

3.   R&D efforts to tackle challenges and technology gap in ADAS security, both from functional and performance perspectives.

4.   Security impacts on functional safety for automotive: detailed analysis, and community consensus building in the context 
of automotive standardization.
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A.1. Lane Departure Warning Usage Case
The lane departure warning (LDW) use case refers to a spe-
cific function by the ADAS system that enables the vehicle 
to sense and calculate model to determine if the vehicle is 
moving in the lane properly. The calculation is ongoing and 
the system generates warning to driver if the LDW module 
determines that the vehicle is currently outside the intended 
lane, or is about to cross the lane line, departing the current 
lane. Figure 8 demonstrates a conceptual system architecture 
that enables LDW function.

In particular, the input taken from sensors include frames 
captured from front cameras in real-time, and speed and 
steering position of the vehicle as captured internally 
through CAN bus. The incoming frames are consumed by a 
sensor pre-processor, which uses the frames to recognize 
objects, such as lane lines, and generates graphical model of 
driving condition with respect to LDW. The graphics model(s) 
are then transmitted to the main processor that fuses sens-
ing information from both the graphics models and current 
conditions of the vehicle, and generates LDW output as the 
outcome of calculation. The output can be in the form of 
video/audio to the corresponding output interfaces.

A.2. Adversarial Model
The expected adversary to LDW usage case are the  
attackers who can launch simple HW attacks with the  
capability of “university challenge.” This means:

• Expected attacker capability: Simple HW attacker

 – Has reverse engineered all firmware, SW

 – Can modify and replace all firmware, SW

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged  
malware onto any micro-processor that  
communicates through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in  
alternate environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K 
part/equipment/computation to develop tools to attack 
many vehicles

A.3. Threat Analysis
A.3.1. Assets and Interfaces
To analyze all threats, the ADAS system is decomposed  
to assets. Threats on each asset are the threats to the  
entire system. Assets can be a piece of software, hardware,  
or data structure. We treat assets as atomic modules in the 
system. The threats on assets are launched through inter-
faces, each assets exposed, including input interfaces  
and output interfaces.

Figure 8 summarizes the relationships between assets. Table 
I enumerates all assets and the corresponding interfaces. 

Appendix A. Threat Case Study #1: Lane Departure Warning (LDW)

Figure 8. Lane Departure Warning System Block Diagram
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ASSET 
ID

ASSET 
NAME

INPUT 
INTERFACE ID

INPUT 
INTERFACE

FROM 
ASSET

OUTPUT 
INTERFACE ID

OUTPUT 
INTERFACES

TO 
ASSET

A1 Camera C1.1 Lens to  
front view External O1.1 AVB/Ethernet 

interface A2

A2 Sensor pre-
processor C2.1 Ethernet port A1 O2.1 Internal bus A3

A3 Main processor
C3.1 Internal bus A2 O3.1 Video port A4

C3.2 CAN port A6 O3.2 Audio port A5

A4 Audio system C4.1 Audio 
input port A3 O4.1 Speaker External

A5 Driver graphics 
output C5.1 HDMI 

input port A3 O5.1 Display External

A6 ECU status 
reporter C6.1 ECU specific 

ports Internal O6.1 CAN bus A3

A7 Frames C7.1 Ethernet 
channel A1 O7.1 Ethernet 

channel A2

A8 Graphics 
models C8.1 Internal bus A2 O8.1 Internal bus A3

A9 Audio warning C9.1 Audio 
channel A3 O9.1 Audio channel A4

A10 Graphical  
warning C10.1 HDMI 

channel A3 O10.1 HDMI channel A5

A11 Velocity info C11.1 CAN 
channel A6 O11.1 CAN channel A3

A12 Steering 
wheel info C12.1 CAN 

channel A6 O12.1 CAN channel A3

Table 1. Assets in LDW Architecture

In this definition, each asset has one or more input interfaces 
and one or more output interfaces. For the assets that expose 
some or all interfaces externally, the interfaces are specially 
labelled. Otherwise, all input interface should specify the 
assets that the input is taken from, and all output interfaces 
should specify the assets that the output is delivered to.

Furthermore, assets A1 – A6 are major modules in the LDW 
system architecture that work together to enable the LDW 
function. Assets A7 – A12 are specifically defined for the data 
structure that moves between major functional assets. We 
define the assets in such way to make sure the properties of 
the data structures are captured. And unexpected changes to 
these data structures that alter the properties are considered 
attacking actions.

A.3.2. Data Structure Asset Properties
For A7 – A12 data structures, we further define all properties 
of concern. 

A7: Frames
• Content parseable as video frame from camera

• Resolution in proper range

• Contrast

• Brightness

• Generated frequency

• Availability
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A8: Graphics model data
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A9: Audio warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

• Volume

A10: Graphics warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

A11: Speed status information
• Data structure syntax

• Data structure semantics

• Availability

• Timeliness

• Frequency

A12: Steering wheel information
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A.3.3. Threat Analysis
To analyze the threats posed by the expected adversaries, we 
start from the expected behavior of the system. In general, 
any attack actions that cause the system to act outside its 
specification, are categorized threats to the system.

The system specification of LDW, from threat analysis  
perspective, is the following:

• The LDW system should produce accurate warning in time, 
based on current driving condition.

Therefore, the attacker’s goal of causing the system to  
act outside its specification can be illustrated in the  
following figure.

As illustrated in Figure 9, the main goal of attacker is “Cause 
incorrect warning w.r.t. current condition.” It can be further 
broken to three cases:

• False warning: the system produces warning to user, when 
the vehicle is NOT departing the lane. Or the system pro-
duces warning to driver with unexpected properties, which 
are considered as “false” as well.

• “Removed” warning: the system fails to produce/deliver 
warning to user, when the vehicle IS departing the lane.

• Delayed warning: the system produces/delivers warning 
not useful at present time, but may reflect past condition.

 – This threat can be considered as the combination of 
“Removed” Warning and then False Warning.

The consequences of attacking LDW may include  
the following:

• False warning:

 – Incorrect warning cause driver panic and potential colli-
sion that cause lost of life and damages of properties

 – In-accurate warnings (maybe too many of them) cause 
decrease user’s trust on LDW system, and the user 
could eventually ignore the LDW system totally
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• “Removed” warning:

 – Lack of warning to reflect current condition is  
equivalent to the vehicle WITHOUT LDW system.

 – If driver relies on LDW system to react to condition,  
the driver’s reaction to dangerous condition could  
be delayed

 – Potential collision and/or other fatal consequences

• Delayed warning:

 – Consequences are the combination from False Warning 
and “Removed” Warning

False Warning Threat Analysis
Table 2 summarizes threat analysis results for False  
Warning Threat. The threats are categorized into threats  
on “input data,” “internal process,” and “output data.” The 
goal is to identify all external/internal interfaces of LDW  
system assets that attacker can manipulate to conduct  
actions and cause the system to produce False Warnings.

Summary
• Manipulation of input data properties have direct impact  

of LDW function correctness

 – Accurately represent current condition (incoming 
frames and vehicle status)

 – Both content and properties are important

• Internal processes are vulnerable because of

 – Malware threats on sensor pre-processor and main 
LDW algorithm for fusion

 – Internal communication on Ethernet channel, CAN bus, 
internal bus, as well as output channels

Figure 9. Threat Analysis on LDW Architecture
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MAJOR 
THREATS

SUB 
THREATS

TARGET 
ASSETS

TARGET 
INT ACTIONS

Input Data

Camera take input A1 C1.1 • Fake env. condition for camera lens

Camera process input A1 N/A • Insert forged frames directly in camera 
processing and memory

• Infect camera firmware to produce forged 
frames that indicate lane departure

Camera delivers frames A1, A7 C1.1, O1.1, O7.1 • Frames are modified with property change: e.g., 
blurry frames to confuse modeling software.

• Insert forged frameworks to indicate lane 
departure

• Remove frames that indicate “normal” condition

Vehicle operation status 
report

A6, A11, A12 C6.1, C11.1, 
C12.1, O11.1, 
O12.1

• Block delivery of speed and steering wheel 
information

• Rush/delay delivery of status information
• Forge speed information: pretend moving fast to 

confuse modeling algorithm
• Forge steering wheel information: report turning 

when vehicle moves straight, or report straight 
when vehicle is turning

Internal Process

Process frames to 
generate models

A2 C2.1 • Insert malicious code that processes frames and 
generate models (malware)

• Modify internal memory with forged information
 – Insert frames indicating lane departure

Output models to further 
LDW alg.

A2  
A8

O2.1, C8.1, O8.1 • Insert malicious code that process  
output models

• Modify internal buffer that stores models
 – Modify generated models
 – Delete models
 – Insert forged models

• Internal bus channel manipulation
 – Same actions as on output buffer

LDW alg. to fuse sensing 
data, and generates 
warning

A3 C3.1, C3.2 • Insert malicious code that fuses sensing data 
and generates warning (malware)

• Modify internal memory with forged information
• Insert models that directly indicate lane 

departure

Deliver output warning to 
output devices

A3
A10

O3.1, C10.1
O10.1

• Insert malicious code that process output 
warnings

• Modify internal buffer that stores output 
warnings

 – Modify generated warnings with undesirable 
properties, e.g., turn up warning volume 

 – Re-order buffered warnings
 – Insert forged warnings in buffer

• HDMI channel manipulation
 – Similar actions as on output buffer

• Audio channel manipulation
 – Similar actions as on output buffer

Output Data

Output device process 
received data

A4
A5

C4.1, C5.1 • Manipulate input buffer to store forged and 
incorrect warning data or modify the stored 
warning data

• Malware in warning data processing code to 
introduce forged final signal for warning output

Output device delivers 
warning

A4
A5

O4.1, O5.1 • Malfunction of A4 to deliver unnecessary loud 
warning

• Output HW delivers forged warning directly 
from attacker

Table 2. Threat Analysis—False Warning Case of LWD
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“Removed” Warning Threat Analysis
Table 3 summarizes threat analysis results for “Removed” Warning Threat. The threats are categorized into threats on  
“input data,” “internal process,” and “output data.” The goal is to identify all external/internal interfaces of LDW system  
assets that attacker can manipulate to conduct actions and cause the system to not produce warning when it should given  
the current condition.

MAJOR 
THREATS

SUB 
THREATS

TARGET 
ASSETS

TARGET 
INT ACTIONS

Input Data

Camera take input A1 C1.1 • Fake env. condition for camera lens
 – E.g., putting up a video to feed in camera lens

Camera process input A1 N/A • Insert forged frames directly in camera 
processing and memory

• Infect camera firmware to produce forged 
frames that indicate normal driving condition

• Delete incoming frames
• Delay incoming frames
• Reorder incoming frames
• Replay normal frames

Camera delivers frames A1, A7 C1.1, O1.1, O7.1 • Frames are modified with property change: e.g., 
blurry frames to confuse modeling software.

• Insert forged frames to indicate “normal 
condition” 

• Remove frames that indicate lane departure 
condition

Vehicle operation status 
report

A6, A11, A12 C6.1, C11.1, 
C12.1, O11.1, 
O12.1

• Block delivery of speed and steering wheel 
information

• Rush/delay delivery of status information
• Forge speed information: pretend moving fast to 

confuse modeling algorithm
• Forge steering wheel information: report turning 

when vehicle moves straight, or report straight 
when vehicle is turning

Table 3. “Removed” Warning Case of LWD (continued to next page)

Notes: Attacker actions for removed warnings are very similar 
to the actions for “False Warning” case. All these actions 
focus on interfaces that could:

• Manipulate input or input processing

• Manipulate output or output delivery

• Manipulate internal processing and internal  
data communication

As discussed above, the “Delayed Warning” attack can be 
achieved with combination of actions for “removed” warning 
and false warning. Therefore, threat analysis for this third 
case can be considered as union of actions as illustrated in 
table 1 and 2.

A.3.4. Data Privacy Discussion
So far, we focus our analysis mostly on examine vulnerabilities 
that cause the ADAS to fail its LDW functionality. Given that 
the system is expected to constantly collect and process input 
data from video cameras and internal CAN bus, there might be 
a concern of privacy of such data. For instance, such data can 
be used to track location of the vehicle, and reveal behavior 
history of the driver(s). 

In our analysis, we believe, there is no privacy concern if the 
data is collected only for the purpose of supporting LDW 
function. The rationale is the following:

• The input data, internal data, and output data are all  
for temporary consumption. The data is not stored  
for long term.

• Front view condition is publically available for any one of 
interest. Instead of attack LDW system directly, attacker 
could simply install his own camera to capture the same  
or similar views.
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MAJOR 
THREATS

SUB 
THREATS

TARGET 
ASSETS

TARGET 
INT ACTIONS

Internal Process

Process frames to 
generate models

A2 C2.1 • Insert malicious code that processes frames  
and generate models (malware)

• Modify internal memory with forged information
 – Insert frames indicating “normal conditions”

Output models to further 
LDW alg.

A2  
A8

O2.1, C8.1, O8.1 • Insert malicious code that process  
output models

• Modify internal buffer that stores models
 – Modify generated models
 – Delete models
 – Insert forged models

• Internal bus channel manipulation
 – Same actions as on output buffer

LDW alg. to fuse sensing 
data, and generates 
warning

A3 C3.1, C3.2 • Insert malicious code that fuses sensing data 
and generates warning (malware)

• Modify internal memory with forged information
• Insert models that directly indicate lane 

departure

Deliver output warning to 
output devices

A3
A10

O3.1, C10.1
O10.1

• Insert malicious code that process  
output warnings

• Modify internal buffer that stores  
output warnings

 – Modify generated warnings with undesirable 
properties, e.g., turn down warning volume  
to zero 

 – Delete warnings directly
• HDMI channel manipulation

 – Similar actions as on output buffer
• Audio channel manipulation

 – Similar actions as on output buffer

Output Data

Output device process 
received data

A4
A5

C4.1, C5.1 • Manipulate input buffer to remove the  
warning data

• Malware in warning data processing code  
to delete output

Output device delivers 
warning

A4
A5

O4.1, O5.1 • Malfunction of A4 to deliver “muted” warning
• Output HW of A5 shut down by attacker

Table 3. “Removed” Warning Case of LWD

Given this reasoning, we think data privacy should not be 
considered as a threat for LDW system.

However, if in the vehicle ADAS, there is a function module 
that collects sensing and vehicle status information and 
stores it in a non-volatile storage for other usages, such as 
telematics, auditing, etc., then there is the privacy concern 
that leakage of such information can be used to reveal user’s 
private driving activities.

Besides data privacy, there may be a need to keeping the 
details of internal LDW algorithm secret, for vendor’s IP 
protection purpose. If there is such need, and the algorithm 
is designed and implemented in such a way that internal data 
models as input for LDW fusion can potentially reveal algo-
rithm details, there should be mechanisms to keep internal 
data private, even if such data is only for temporary con-
sumption. Alternatively, the vendor could choose to design 
or re-design the LDW algorithm, so that internal model data 
structure won’t provide information that helps to recover 
algorithm details.
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B.1. Adaptive Cruise Control Usage Case
The adaptive cruise control (ACC) use case refers to another 
specific function by the ADAS system that enables the vehicle 
to autonomously manage its moving speed, based on the  
following four sources of information:

• Current vehicle condition

• Driving condition and relative speed of leading vehicle

• Road conditions

• Driver’s preference

ACC is the advanced version of current cruise control function. 
Currently, the cruise control accepts a speed set value from 
driver and manages the vehicle control system to maintain the 
target speed. It may takes additional sensing information for 
speed management from road, e.g., up/down hill and turning. 
However, traditional cruise control does not allow the vehicle 
to adjust vehicle speed dynamically according to the relative 
distance to the leading vehicle.

Primary intelligence in ACC is the capability of recognize 
leading vehicle(s), estimate relative distance, and even  
predict the leading vehicle’s next moving model. 

Compared with LDW, ACC function provides additional  
opportunity to analyze a more complete example of ADAS 
function that involves input, internal process, and real-time 
control command and actuation. Based on ISO 26262 require-
ments, LDW is generally considered as ASIL B function and 
ACC is generally considered as ASIL C/D function. In other 
words, ACC has more stringent safety requirements. For the 
same ADAS system architecture, implementing ACC means 
need to reduce exposure to failure, reduce severity of system 
failures, and increase controllability when failure happens.

Appendix B. Case Study #2: Adaptive Cruise Control (ACC)

ACC function, by nature has higher severity in the conse-
quences of failure, because it involves direct vehicle control, 
as opposed to only the warning through UI to driver. The 
controllability is outside the consideration of this analysis. 
Therefore, our focus should be on exposure to failures. 
Attack actions to ACC function could potentially increase 
system exposure to failure significantly. We’ll visit this issue 
in risk analysis.

Figure 10 illustrates a conceptual system architecture that 
enables ACC function.

The similar ADAS architecture is used to support ACC func-
tion. For ACC, the system takes different input data set, runs 
the ACC modeling algorithm, and output to take actions that 
manage vehicle speed. Here’s the summary:

Input:
• Speed, acceleration status (gas, brake) from CAN bus

• Graphics: front cameras, lidar, radar

• Road condition: surface condition, uphill/downhill, curves, 
weather conditions (from local sensors as well as through 
network communication)

ACC Algorithm:
• Leading vehicle(s) object detection

• Distance estimation

• Leading vehicle driving condition assessment  
and prediction

• Hazard detection: sudden brakes, pedestrians,  
traffic sign/light, speed limit, road construction, etc.

• Speed management prediction

Figure 10. Adaptive Cruise Control System Example Architecture
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Figure 11. Functional Flow Diagram for ACC
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Figure 11 gives an example flow diagram with respective to 
more detailed processing in ACC function. Focusing on the 
fusion algorithms for ACC, there may be a nature separation 
of processing among the main platform as ADAS brain, and 
the sensing data pre-processor.

As shown in Figure 11, the smart sensing platform could be 
responsible for taking input from sensors, and construct-
ing models for object recognition, and extra properties and 
conditions of the detected objects. In this process, there may 
be multiple sensing platforms, each handling a set of sen-
sors that provide a specific type of sensing information. In 
ACC case, sensing processing for video frames from camera, 
for lidar input, and radar input could be separated. There is, 
however, a process used to fuse all three types of sensing 
data to accomplish accurate object detection, recognition, 
and distance estimation.

The models of recognized objects could then be passed  
to ADAS brain platform. Here, there are multiple ADAS  
use cases supported, besides ACC. More powerful fusion  
process on ADAS brain takes input from smart sensing  
platform, user’s input, road condition input, and vehicle  
operation status from CAN bus, and conduct processes to:

• Predict object movement

• Model road surface and condition

• Calculate desirable speed for vehicle and/or desirable  
distance to be maintained from the leading vehicle

• Eventually generate speed management command

The speed management commands are then passed to low 
level controllers. Here corresponding throttle controller or 
brake controller processes the input command and take  
actions to adjust vehicle speed via throttle or brake.

Threat analysis, all these ACC fusion and control processes 
are under consideration.
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B.2. Adversarial Model
The expected adversaries to ACC usage case are the same  
as the model used for LDW threat analysis.

Here these are the attackers who can launch simple  
HW attacks with the capability of “university challenge.”  
This means:
• Expected attacker capability: Simple HW attacker

 – Has reverse engineered all firmware, SW

 – Can modify and replace all firmware, SW

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged mal-
ware onto any micro-processor that communicates 
through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in  
alternate environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K 
part/equipment/computation to develop tools to attack 
many vehicles

B.3. Threat Analysis
B.3.1. Assets and Interfaces
Following the same analysis philosophy, we define ADAS 
assets for ACC function. The architecture is slightly more 
complex than the LDW architecture, due to diverse types  
of input and additional actuation control command output.

Table 4 numerates assets and interfaces for ACC architecture.

B.3.2. Data Structure Asset Properties
For A12 – A21 data structure assets, we further define all 
properties of concern.

A12: Frames
• Content parseable as video frame from camera

• Resolution in proper range

• Contrast

• Brightness

• Generated frequency

• Availability

A13: Graphics model data
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A14: Audio warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

• Volume

A15: Graphics warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

A16: Speed status information
• Data structure syntax

• Data structure semantics

• Availability

• Timeliness

• Frequency

A17: Lidar input
• Content parseable as Lidar sensing data

• Resolution in proper range

• Generated frequency

• Availability

A18: Radar input
• Content parseable as Radar sensing data

• Resolution in proper range

• Generated frequency

• Availability

A19: Speed change command
• Content parseable as speed change command

• Desirable speed value within valid range

• Desirable speed value reflects current driving condition

• Desirable acceleration/deceleration time window is  
a valid range and reflects current driving condition

• Availability

• Timeliness
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Assets in Adaptive Cruise Control (ACC) System Architecture
ASSET  
ID

ASSET  
NAME

INPUT 
INTERFACE 
ID

INPUT  
INTERFACE

FROM 
ASSET

OUTPUT 
INTERFACE 
ID

OUTPUT 
INTERFACES

TO 
ASSET

A1 Camera C1.1 Lens to front view External O1.1 AVB/Ethernet interface A2

A2 Lidar sensor C2.1 Lidar sensing port External O2.1 Internal communication link A4

A3 Radar sensor C3.1 Radar sensing port External O3.1 Internal communication link A4

A4 Sensor pre-
processor

C4.1 Ethernet port A1

O2.1 Internal bus A5C4.2 Lidar link port A2

C4.3 Radar link port A3

A5 Main processor

C5.1 Internal bus A4 O5.1 Video port A6

C5.2 CAN port A9 O5.2 Audio port A7

C5.3 Internal bus A10 O5.3 CAN bus A7

C5.4 Network driver A11

A6 Audio system C6.1 Audio input port A5 O4.1 Speaker External

A7 Driver graphics 
output

C7.1 HDMI input port A5 O5.1 Display External

A8 Low level controller C8.1
Throttle/brake 
command input 
port

A5 O8.1, O8.2

Internal channel (could be 
CAN bus) to send command to 
Throttle Controller or Brake 
Controller

Internal

A9 Vehicle status 
reporter C9.1 ECU specific Internal O9.1 CAN bus A5

A10 On board road 
condition sensors C10.1 Sensor specific 

sensing input port External O10.1 CAN bus or other internal 
channel A5

A11 Weather condition 
reporter C11.1 Internet driver External O11.1 Internal channel A5

A12 Video Frames C12.1 Ethernet channel A1 O12.1 Ethernet channel A4

A13 Graphics models C13.1 Internal bus A4 O13.1 Internal bus A5

A14 Audio warning C14.1 Audio channel A5 O14.1 Audio channel A6

A15 Graphical  warning C15.1 HDMI channel A5 O15.1 HDMI channel A7

A16 Velocity info C16.1 CAN channel A9 O16.1 CAN channel A5

A17 Lidar input C17.1 Lidar sensing port External O17.1 Internal link A4

A18 Radar input C18.1 Radar sensing port External O18.1 Internal link A4

A19 Speed change C19.1 CAN bus A5 O19.1 CAN bus A8

A20 Road condition 
sensing data C20.1 CAN bus A10 O20.1 Internal channel A5

A21
Weather information 
(rain or not, and how 
hard)

C21.1 Network driver/
port A11 O21.1 Internal channel A5

Table 4. Assets in ACC Architecture

A20: Road condition sensing data
• Content parseable as road condition sensing data

• Availability

• Data frequency

A21: Weather information
• Content parseable as weather information

• Generated and provided by an authorized source

• Content authenticated from the authorized source

• Timeliness

• Availability
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B.3.3. Threat Analysis
To analyze the threats posed by the expected adversaries, 
again, we examine the expected behavior of the system.  
In general, any attack actions that cause the system to act 
outside its specification, are categorized as the threats  
to the system.

The system specification of ACC, from threat analysis  
perspective, is the following:

• Manage vehicle speed adaptive to real-time  
driving conditions

This means that the success of ACC function can be  
measured by the following criteria:

• Achieve cruise control function with reasonable conditions

• Minimize danger of collision via real-time  
speed management

• Minimize traffic congestion factors

• Maximize user comfort

These attacking consequences are illustrated Figure 12. 

For the system design, the first two criteria are considered 
as primary, given the ACC function has direct safety goals. 
Therefore, the attacker’s goal of causing the system to act 
outside its specification is primarily on: causing the failure  
to manage proper speed to the point that the attack can  
compromise the system design goal according to the  
success criteria.

We are going to focus primarily on the safety critical  
consequences. The rest of this section presents in more  
details on the threat analysis that cause ACC safety  
critical consequences.

Collision Under ACC Threat Analysis
Similar to LDW, the threat analysis is conducted on assets in 
the system, for threats from “input data,” “internal process,” 
and “output data.” The goal is to identify all external/internal 
interfaces of ACC system assets that attacker can manipulate 
to conduction actions and cause the system to cause colli-
sion. A similar table, as LWD threat analysis, can be created 
for capturing all threats.

Figure 12. High Level Threats in ACC System
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Figure 13. Detailed Threat Analysis on “Collision under ACC” case
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Here, we use Figure 13 to summarize our findings. In  
addition to the enumeration by a detailed threat analysis 
table, an organized tree of threats is created describe  
relationship of each threat to how it eventually achieve  
the attack goals.

In Figure 13, the individual threats are the leaves in the tree. 
They are color-coded by four categories: compromised SW, 
sensing failure, risks on internal communications, and HW 
mechanical failure. The figure illustrates the process how an 
attack could take action on an entry point, manipulating the 
system from that leaf upwards to parent nodes, which repre-
senting the consequences caused by this action. Eventually, all 
these internal unexpected changes in the system lead to the 
final result of compromising ACC function and cause collision.

Here’s how the consequences are defined.

L0: Collision under ACC System, caused by
• L1.1: False action on Throttle, or 

The primary concern is that the vehicle doesn’t slow  
down in time that causes collision with leading vehicle. 
Reduction of speed within a time window is the primary 
concern. Failures in generating, or processing, or executing 
the appropriate command are the primary causes to  
this consequence.

• L1.2: Missing action by brake system 
When braking is required to avoid collision, missing the 
braking action becomes fatal. This could be caused by 
failures in generating, processing, or executing braking 
commands by the system.

L1.1: False action non Throttle, caused by 
• Throttle mechanical failure 

Mechanical problem is out of scope for ACC threat analysis

• Modified or missing command to throttle (on A19) 
False information causes throttle to fail to reduce the 
speed given required time window. Modification on A19,  
or the internal channel could include:

 – Incorrect speed target (not enough reduction, or even 
increase speed)

 – Longer time window specified to reduce speed

 – Missing speed reduction command

 – Delayed speed reduction command

• L2.1: Incorrect command generated by A8 
This internal needs further analysis. Incorrect command 
could be caused by either the input failures, or internal 
processing failures.

L1.2: Missing action by brake controller, caused by 
• Brake mechanical failure 

Mechanical problem is out of scope for ACC threat analysis

• Modified or missing command to brake (on A19) 
False information causes brake to fail to brake in time. 
Properties on A19 that could lead to the consequence 
could be either command been delayed or deleted.  
Further, if there is a time window specified to take brak-
ing action, a malicious change to prolong the time window 
information will cause the failure of braking properly. 

• L2.2: Failure in generating braking command by A8 
This internal needs further analysis. Incorrect command 
could be caused by either the input failures, or internal 
processing failures. 

• L2.3: Delayed in generating braking command by A8 
This internal needs further analysis. Incorrect command 
could be caused by either the input failures, or internal 
processing failures.

L2.1, L2.2, L2.3: Internal: Incorrect command generated by 
A8, caused by
• Miscommunication of target speed information input to 

A8 (input interface)

 – Missing speed change, or time window for  
action restriction

 – Increase of target speed to an undesirable level

 – Delayed speed change command

• L3.1: Incorrect space/speed modeling results from A5

 – This is an internal condition that needs further  
analysis. The desirable outcome by the attacker is  
to manipulate A5 or the input interface of A5 so that  
the output speed change command is manipulated  
to achieve the properties as describe in the above:  
increase of target speed to an undesirable level or  
missing speed reduction when it needs to.

• L3.2: Delayed space/speed modeling results from A5

 – Similarly, this is an internal condition that needs further 
analysis. A5 or input interfaces are manipulated in such 
a way that the output of speed reduction command is 
delayed.
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L3.1: Internal: Incorrect space/speed modeling results  
from A5, caused by
• Compromised ADAS brain fusion algorithm SW 

This can be achieved by malware infection. Once  
the fusion algorithm SW is taken by the attacker, its  
behavior is completely controlled by the attacker.  
Therefore, the output of space or speed modeling  
is by attacker’s choice completely.

• Manipulation on O5.3, for output properties

 – Properties: speed value, space value,  
availability, timeliness

• L4.1: Internal: incorrect modeling of current  
condition, including

 – L4.1.1: Incorrect leading car speed prediction

 – L4.1.2: Incorrect leading car distance estimation

 – L4.1.3: Improper road condition models

 – Combination of above

L3.2: Internal: Delayed space/speed modeling results  
from A5, caused by
• Compromised ADAS brain fusion algorithm SW 

See L3.1 for further details

• Manipulation on O5.3, for output properties

 – Property: delay output

• L4.2: Internal: incorrect modeling of current condition, 
that leads to delayed completion 
L4.1.1, L4.1.2, L4.1.3 could lead to delayed output as well

L4.1.1: Internal: Incorrect leading car speed prediction
L4.1.2: Incorrect leading car distance estimation 
• Compromised ADAS brain fusion algorithm SW on A5

• Input failures on C5.1

 – Models delayed, forged, deleted, or miscorrelated

• Input failures on C5.2

 – CAN bus problem to provide correct information on the 
vehicle speed status

• L5.1: Internal: Incorrect object recognition or distance 
estimation from A4

L4.1.3: Improper road condition models 
• Compromised ADAS brain fusion algorithm SW on A5

• Incorrect road condition sensing input

 – E.g., incorrect sensing that misses “downhill” condition

 – Lack of weather info to indicate slippery road on  
a rainy day

 – This could be achieve by compromising sensors di-
rectly, or by compromising external weather source

• Missing road condition information

 – E.g., missing “downhill information”

• Corrupted communication to C5.3 and C5.4

 – Similar properties of sensing data or weather  
information are changed

• Input failures on C5.2

 – CAN bus problem to provide correct information  
on the vehicle speed status

• L5.1: Internal: Incorrect object recognition or distance 
estimation from A4
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L5.1: Internal: Incorrect object recognition or distance  
estimation from A4
• Compromised SW: smart sensing platform (A4) with 

infected software 
Output of speed modeling can be of attacker’s choice

• Compromised communication 
Input channels are compromised (C4.1, C4.2, and C4.3). 
Properties could directly affect the outcome of object 
recognition, and object distance estimation, could include:

 – Availability of frames, or lidar, or radar signals that  
illustrates current condition

 – Content of input information

 » Maliciously modified, or inserted with forged  
information

 – Frequency of input information

 – Correlation of these three sensing data streams that 
directly impact the outcome of the modeling

• Compromised sensing

 – A1: front camera compromised to produce  
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the lens that feed in  
as sensing input

 » Compromised camera FW/SW that produces  
undesirable output

 » HW compromise on A1, mechanical errors

 » Failed calibration

 – A2: Lidar sensor compromised to produce  
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the input interface to be fed in

 » Compromised sensor FW/SW that produces  
undesirable output

 » HW compromised on A2, mechanical errors

 » Failed calibration

 – A3: Radar sensor compromised to produce  
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the input interface to be fed in

 » Compromised sensor FW/SW that produces  
undesirable output

 » HW compromised on A3, mechanical errors

 » Failed calibration

Discussion on Other Three Threats
As described above, besides collision caused under ACC 
function, there are three other types of threats:

• Failure to enable ACC under reasonable conditions

• Cause Traffic condition given reasonable conditions

• Cause discomfort given reasonable conditions

These three threats are real to users, although not necessarily 
directly related to driving safety. Here we briefly discuss these 
threats, especially some of the detailed actions by attacker 
that are not covered in collision threat analysis.

Failure to Enable ACC
Hypothetically, the user input the desirable speed through 
the existing input interface to trigger ACC function. The ACC 
system then could take the input, launch the software mod-
ule, and wake up sensors. The system could be attacked via 
threats on

• User’s input

• Sensor calibration error

• ACC function testing

• ACC function testing output

Under a typical driving environment, such as 

• reasonable leading vehicle distance, 

• past speed dynamics is reasonable, 

• the road is not too slippery, and 

• visibility is good enough for sensing,
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The ACC can be successfully enabled, after the ACC system 
runs a round or multiple rounds of quick test. Hence, the 
threats posed by attacker that can fail the launch of ACC 
involve actions to cause the system to produce output that 
indicates failure of one or more of the above 4 conditions. 

Overall, the threats can be summarized in Figure 14.

Attack actions on Internal ACC testing procedure can be very 
similar to the actions taken to achieve collision. Similar threat 
analysis for collision is applicable here. The difference lies in 
that the same vulnerabilities are utilized and information is 
manipulated differently to convince the system that it is too 
dangerous, or unreasonable to launch ACC now, even though 
the current driving condition is normal. Hence, the goals are 
opposite to some of the attacking goals in the collision case.

Failed to launch ACC could also be achieved by failure in ac-
cepting user’s input, or errors in user input. Attacker could 
take action on user’s input interface to delete, delay, replay, 
modify, or insert fake command from user. The attack surface 
could be on the direct external interface, or the module that 
process the input command, or the internal communication 
channel to delivers the command to ACC system.

Failed to launch ACC could also be achieved by failing the sen-
sor calibration. During the process of system launching, the 
necessary sensors need calibration before they can be used to 
capture sensing data for ACC function. Failure in enabling sen-
sors properly via calibration can directly fail ACC function and 
system. The attacking surface could be on the direct attacks 
in sensor mechanics, or the module that handles calibration, 
or the internal communication channels that pass information 
between modules for the purpose of calibration, or the output 
channels to confirm success of calibration.

Finally, output confirmation could be disrupted by the  
attackers that could effectively disable the launch of  
the ACC system.

Figure 14. Threat Analysis—“Failure to Enable ACC” case
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