
Advanced Driver
Assistant System
Threats, Requirements, Security Solutions

EXECUTIVE SUMMARY
This paper discusses security vulnerabilities and potential solutions for Advanced
Driver Assistance Systems (ADAS). We introduce ADAS system architecture and
present use cases. We further provide detailed threat analysis of two leading
ADAS use cases: (1) lane departure warning and (2) adaptive cruise control. Based
on threat analysis results we identify security problem areas and state security
requirements for each. We devote the last part of this paper to ADAS security
solutions that can meet identified objectives.

This study makes several key contributions to addressing ADAS security problems
• Establish critical needs to addressing security problems via detailed

threat analysis

• Define main security problem areas for ADAS

• Identify challenges and requirements for securing ADAS control functions

• Establish the mission of securing E2E ADAS data path

• Define trust foundation for secure ADAS platforms

• Make recommendations for “ADAS security solution menu”

1. Introduction
Demand for Advanced Driver Assistance Systems (ADAS) is caused by desire to
build safer vehicles and roads in order to reduce the number of road fatalities
and by legislation in the leading countries. ADAS is made of the following physical
sensors: radar, LIDAR, ultrasonic, photonic mixer device (PMD), cameras, and night-
vision devices—that allow a vehicle to monitor near and far fields in every direction
and of evolving and improving sensor fusion algorithms that ensure vehicle, driver,
passenger’s, and pedestrian’s safety based on factors such as traffic, weather,
dangerous conditions, etc. Modern ADAS systems act in real time via warnings
to the driver or by actuation of the control systems directly and are precursors
to the autonomous vehicles of the future.

Lead Author: Meiyuan Zhao
Research Scientist

Security & Privacy Research, Intel Labs
meiyuan.zhao@intel.com

Technical White Paper

Table of Contents
Executive Summary ...1

1. Introduction ..1

2. ADAS System Background ..2

 2.1. ADAS Example Usage Cases ...3

 2.2. ADAS Conceptual Architecture ...3

3. ADAS Security Problem Areas..5

4. ADAS Control Function Threat Analysis7

 4.1. Adversarial Model ..7

 4.2. Use Cases for Threat Analysis..7

 4.3. Summary of Threat Analysis Results8

5. ADAS System Security Requirements9

 5.1. Control System Security Requirements9

 5.2. Lifecycle Management Security Requirements 10

 5.2.1. Start Secure ... 10

 5.2.2. Run Secure ... 10

 5.2.3. Stay Secure .. 10

6. Secure End-to-End ADAS Data Path 10

 6.1. Summary—Solution Areas ... 11

 6.2. Secure ADAS Computing Platforms 11

 6.3. Intel ADAS Platform Security Foundation 12

 6.4. Secure Sensing .. 13

 6.5. Secure Actuation ... 14

 6.6. Secure ADAS Main Data Processing 14

 6.7. Secure Connected Ensembles .. 15

7. Conclusion .. 16

References .. 16

Appendix A. Threat Case Study #1:
Lane Departure Warning (LDW) .. 17

 A.1. Lane Departure Warning Usage Case 17

 A.2. Adversarial Model .. 17

 A.3. Threat Analysis .. 17

 A.3.1. Assets and Interfaces .. 17

 A.3.2. Data Structure Asset Properties 18

 A.3.3. Threat Analysis .. 19

 A.3.4. Data Privacy Discussion ..22

Appendix B. Case Study #2:
Adaptive Cruise Control (ACC) ... 24

 B.1. Adaptive Cruise Control Usage Case 24

 B.2. Adversarial Model ..26

 B.3. Threat Analysis ..26

 B.3.1. Assets and Interfaces ..26

 B.3.2. Data Structure Asset Properties26

 B.3.3. Threat Analysis ..28

There are several challenges to design, implement, deploy,
and operate ADAS. The system is expected to gather accurate
input, be fast in processing data, accurately predict context,
and react in real time. And it is required to be robust, reliable,
and have low error rates. There has been significant amount
of effort and research in the industry to solve all these chal-
lenges and to develop the technology that will make ADAS
and autonomous driving a reality.

In addition to functional requirements, ADAS must be
secured from adversaries with malicious intent whose
goal is to compromise the system and cause catastrophic
accidents with loss of life and damage to property.

It has been shown both in academia and automotive
industry that control system can be compromised via
malicious attacks launched through various means, for
example via DVD player, the ODB-II port,1,2 or even wirelessly
via tire pressure sensors,3 as a result displaying to the driver
wrong warnings3 or even causing fatality by remotely dis-
abling braking system on a vehicle while it is moving.1,2
In addition to protecting the system from criminal actors,
there is a bigger threat looming from nation-state
sponsored cyber terrorism.

In this whitepaper we argue that ADAS security should be
considered as a fundamental non-functional requirement—
together with reliability, robustness, performance, and low
error rates. We analyze vulnerabilities in a conceptual ADAS
architecture via representative use cases. Based on the
vulnerability analysis results we state security requirements
and make suggestions on countermeasures against malicious
attacks. We show that ignoring ADAS security compromises
other design goals.

2. ADAS System Background
ADAS system provides assistance to the driver and improves
driving experience. Its primary function is to ensure safety
of the vehicle, the driver, and the pedestrians or bikers. ADAS
could be used to save fuel costs by enabling platooning in
which vehicles follow each other within close distance; it
could warn when a vehicle swerves across the lane or it
could apply emergency brake to avoid collision, etc. To
function reliably, ADAS must be able to recognize objects,
signs, road surface, and moving objects on the road and to
make decisions whether to warn or act on behalf of a driver.

2

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

2.1. ADAS Example Usage Cases
ADAS system is considered as the advancement from driver
assistant system (DAS). DAS is a system that informs and
warns, provides feedback on actions, increases comfort,
and reduces workload by actively stabilizing or maneuvering
the vehicle. ADAS system is considered as a subset of DASs,
with increased use of complex processing algorithms to
detect and evaluate the vehicle environment based on
data collected via a variety of sensor inputs. Figure 1
demonstrates the spectrum of DAS capabilities available
in production today; the capabilities considered as ADAS
are highlighted with stars. The ADAS usage cases that re-
quire full power of real-time processing and intelligence are
highlighted with full stars, whereas half-colored star marked
usage cases are relatively more rudimentary ADAS cases.

2.2. ADAS Conceptual Architecture
To support ADAS functions the architecture must include
modules for sensing, processing, intelligence generation,
and decision making. Figure 2 is a generic view of what the
ADAS system might look like. The overall system compro-
mises sensors of various types; a CPU-GPU combination to
perform the sensor data processing, object identification,
and early sensor fusion; a “Central Brain” CPU for performing
sensor fusion from different sensor blocks, object tracking,
vehicle control activities to interact with the actuation, and
a diagnostics block.

Figure 1. Spectrum of DAS and ADAS Functions

DRIVING
STABILITY

LONGITUDINAL
CONTROL

LIGHT
AND SIGHT

PARKING

COCKPIT

LATERAL
CONTROL

Electronic self-locking differential

Electronic break power distributor

Anitblocking system

Traction control

Electronic stability program

Steering support

Tire pressure control

Vertical dynamic control

Adaptive curve light

Automatic headlight range adaption

Beam light assist

Night vision

Adaptive light system

Automatic warning light

Rain sensor system

Rear view camera
Blind spot detection

Driver state monitoring

Cruise control

Automatic cruise control

Speed limit information

Intelligent speed adaption

Right of way regulation information

Traffic sign/light violation warning

Brake assist

Automatic emergency brake

Automatic brake control

Hill climb automatic
Start automatic

Automatic hold

Dry brake

Brake preparation

Passenger seat observer

Navigation system
Fuel consumption optimisation

Lane departure warning

Lane keep support

Lane change support

Turn assist
Lane change assistSurround view

Park distance control

Automatic parking assist

Alighting assit

Power steering

Active steering

DAS

–

–

–

–

–

–

–

–

–

–

3

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

This system is considered as a close-loop control system, where the vehicle control actuation actions are computed based
on received data from sensors. And the outcome of the ADAS actuation actions is fed back in the loop as sensor input. All the
computing units in ADAS of the vehicular system are generally referred to as electronic control units (ECUs). The sensing and
actuation ECUs are relatively resource constrained units, compared with the central processor of ADAS.

One of the key advancements in ADAS design is the concept of “sensor fusion.” This is the process by which the internal pro-
cessing takes input from the multiplicity of external sensors and creates a map of possible impediments around the vehicle. The
map then facilitates the computation that creates a series of possible actions and reactions through situational analysis. Figure 3
shows an example ADAS-enabled vehicle with a collection of sensors to enable sensor fusion and actions.

Figure 2. Conceptual Hardware Block Diagram for ADAS System

Figure 3. Example ADAS Sensors

SMART
SENSOR SMART

ACTUATOR

SMART
ACTUATOR

SMART
SENSOR

SMART
SENSOR

SENSOR
PROCESSOR

CENTRAL
PROCESSOR

RAM

ROM RAM ROM

CLOCK

ASILD
WDT

POWER
SE

N
SO

R
CO

M
M

U
N

IC
AT

IO
N

PR
O

TO
CO

L

CO
M

M
U

N
IC

AT
IO

N
 P

O
RT

A
L

CO
M

M
U

N
IC

AT
IO

N
 P

O
RT

A
L

VIDEO
CAMERA

REVERSE
CAMERA

NIGHT VISION
CAMERA

ULTRASOUND MID-RANGE
RADAR BACK

MID-RANGE
RADAR FRONT

LONG-RANGE
RADAR

4

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Sensor fusion and situational analysis can be done case
by case for different ADAS functions and occurs at mul-
tiple levels. It is beneficial to have early fusion (determining
conditions as early as possible) and a centralized processing
“brain” (improving quality of detection and reducing CPU
power consumption). Figure 4 demonstrates an approach
where sensor fusion occurs in both the sensor processor
and the central brain. With this design, the system provides
a horizontal architecture that can support multiple ADAS
applications in parallel. Such architecture is an advancement
from vertical systems that only support individual ADAS ap-
plications case by case. We base our security analysis on this
conceptual architecture.

Figure 4. Example Sensor Fusion in ADAS

LANE
DEPARTURE

WARNING

FORWARD
COLLISION
WARNING

BLIND SPOT
DETECTION
WARNING

ACTIVE
CRUISE

CONTROL

ADAS
APPLICATION

N

SENSOR FUSION

SITUATIONAL ANALYSIS

CLASSIFICATION

TRACKING

OBJECT DETECTION

FEATURE EXTRACTION

PRE-PROCESSING

SENSOR INPUT N

CLASSIFICATION

SENSOR INPUT 1 SENSOR INPUT 2

TRACKING

OBJECT DETECTION

FEATURE EXTRACTION

PRE-PROCESSING

TRACKING

OBJECT DETECTION

FEATURE EXTRACTION

PRE-PROCESSING

3. ADAS Security Problem Areas
Before looking into details of security threats, let us
first examine, at high level, what are the major areas of
concerns for ADAS system in dealing with hostile running
environment and malicious actions by adversaries. In gen-
eral, any malicious actions that could cause ADAS system
to behave outside its specification are referred to as threats
to ADAS. And the interfaces that allow such threats to occur
are referred to as attack surfaces. Now the key questions are:
what is the specified behavior of an ADAS system, and how
do attackers cause the system to misbehave? The answers
to these questions lead to the discovery of three major ADAS
security problem areas.

5

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Control System Security
As we discussed before, ADAS can be thought of as a
close-loop control system. While in operation it must
satisfy functional safety, efficiency, performance, and
reliability requirements. We refer to this whole system
behavior as “ADAS control system and processing” and
make securing it our priority.

Threats to the control function come from any actions the
attacker could take, given their capabilities, to cause the
system to act outside of its specifications. Any changes of
the system properties that contribute to the violation of
its safety goals may happen due to deliberate attacks. The
security requirements to support safety goals should mainly
concern establishing and maintaining functional integrity
and other requirements. With further threat analysis and risk
assessment, one could derive detailed security requirements,
which will be discussed in Section 5.1.

ADAS Data Protection
In addition to attacking core functions of ADAS, the attacker
could be motivated to attack the system to achieve other
unexpected consequences by the original design. For example,
the attacker could eavesdrop on ADAS data processing and/
or internal communication to gain access to ADAS data. Leak-
age of data to an external party other than for local control
system consumption may also be an unexpected behavior of
the system, therefore a second area of security problem for
ADAS may come from ADAS data protection. Security system
must ensure Confidentiality, Integrity, and Availability (CIA)
of data collection.

The practice of recording data for accountability may be
implemented by a “blackbox” system. Should the blackbox
be implemented, the storage security would be an issue. Simi-
larly, integrity protected storage system would be required
if the storage is used for collecting and storing other vehicle
related information, such as object classifiers or maps. The
specific threats are similar as seen in a typical storage system
in the traditional computing world. Hence, in this whitepaper,
we do not dedicate our focus on understanding threats in
such systems, as well as the derived requirements on ADAS
data protection. Nonetheless, there exist many studies in
the literature that we could leverage. In this article, we derive
security requirements based on existing threat studies and
certain solutions can be leveraged to address security issues
for data protection and access control.

Secure Lifecycle Management
Deploying and maintaining intended modules in the ADAS
is as important as any other protection mechanism for ensuring
ADAS system behavior according to the specifications. This
process is typically referred to as lifecycle management.
Changes to the ADAS system could be triggered by:

• System upgrade/algorithm updates

• Software patch

• Installation of new components for additional functions

• Hardware recovery and replacement

• System recovery due to compromise

• Root of trust update due to authority updates in
the administrative domain

• Cryptographic algorithm and key updates due
to cryptosystem migration or other reasons

ADAS is especially vulnerable to malicious actions
during updates because some interfaces which are
not normally available become open to external data or
external operations. Furthermore, ADAS system consists
of multiple modules. Any changes to any one of the modules
will require the system to re-establish trust relationships
between these modules so that they can reliably exchange
data and commands.

Lifecycle management security is not a new problem for
ADAS system. Any computing system needs to deal with
changes to ensure that the system can “start secure—run
secure—stay secure.” The same problem in ADAS system
is facing extra challenges:

• Secure update on control system immature in auto
industry and ecosystem
Manual update at a garage or repair shop by trained
professionals is a common practice. Update process
usually requires proprietary tools and labor intensive
work. Although there is a new trend of attempting to
enable remote update via standardized processes to
relief the labor cost the procedure is still not mature
enough to be pervasive. This is especially true for the
updates that require intense verification on control
system integrity.

6

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

• Small scale ECUs to meet security primitive
requirements for secure update
Updating relatively large scale computing platforms is
straightforward since there are available system update
and recovery technologies and services suitable for such
platforms. ADAS, however, may have smaller scale micro-
controllers for sensors and actuators. Such small scale
platforms may not have sufficient cryptographic or security
primitive support. Hence, the challenge is to achieve the
same security objectives with lightweight system update
security technology.

• Long lifetime vs. limited cryptographic strength
Control systems like the vehicles typically have long life-
times. Cryptographic solutions in the current computing
world, however, have relatively shorter lifetimes. Hence,
during the ADAS system lifecycle, there may appear the
need to update the ADAS system with stronger and new
cryptosystem. This problem in the traditional computing
system is not critical given that most of the devices must
be operational only for a few years. Careful design and
analysis is required for updating the cryptographic system,
because it effectively serves as the basis of trust for every
security function. Compromising the root of trust will
surrender control to attackers.

4. ADAS Control Function Threat Analysis
For conducting threat analysis, we need information on
1) target usage case; 2) architecture for the use case;
3) expected adversarial model. The analysis methodology
is a commonly used approach where we decompose the
system to assets and examine every interface exposed by
each asset to understand all possible behaviors with all
possible interface parameters and values.

4.1. Adversarial Model
Let’s first define expected adversarial model in our analysis.
We use a typical adversarial model, the same for analyzing
threats to Intel’s system product and technology. ADAS sys-
tems share many properties as a typical computing system.
Hence, the adversarial model for the computing system is
mostly applicable to ADAS system. We assume that ADAS
system should worry about the attackers who can launch
simple hardware attacks with the capability of “university
challenge.” This means:

• Expected attacker capability: Simple hardware attacker

 – Has reverse engineered all firmware, software

 – Can modify and replace all firmware, software

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged
malware onto any micro-processor that communicates
through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in alternate
environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K
part/equipment/computation to develop tools to attack
many vehicles

Compared with the typical computing system, the difference
in ADAS system is mostly on the physical aspect, besides the
cyber actions and capabilities. For instance, the ADAS function
used for controlling operation of the vehicle physically offers
opportunities to attackers to launch their actions that may lead
to consequences on control systems, on actuators, and on
other ECUs that have mechanical impact to the vehicle. On the
other hand, the attacker could also potentially launch attack
via physical actions and eventually cause cyber or physical
consequences. In our analysis, we attempt to cover both
cyber and physical aspects of possible attacking actions.

4.2. Use Cases for Threat Analysis
Two applications are used in the study:

• Lane Departure Warning (LDW)

• Adaptive Cruise Control (ACC)

LDW use case is for vehicle lateral control, where warning
is presented to driver if the ADAS system detects that the
vehicle is departing from the current lane. The main function-
ality by the sensors and data fusion is to recognize the lane
lines and predict the vehicle’s driving direction based on the
detected trajectory.

ACC use case is for vehicle longitudinal control. It manages
the vehicle speed adaptively based on the detection of
distance with leading vehicle, the current speed, the
road condition, and prediction of leading vehicle’s speed
change. In this application, the ADAS system continuously
generates actuation command to control throttle ECU
or brake ECU accordingly.

These two applications use similar ADAS architecture, with
some differences on required input sensing data and output
data format and purpose. Their output difference is clear:
warning only or take direct actuation. Potential failure in
computing and generating corresponding output in these
two cases may have dramatically different consequences.

These two use cases can represent several ADAS functions
that improve driving experience and support safety. Our
future work will extend the threat analysis on other use
cases that facilitate parking or improving lighting and sight,
as illustrated in Figure 1.

7

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

4.3. Summary of Threat Analysis Results
Detailed threat analysis is documented in Appendix A and
Appendix B. Here, we provide a summary of threat analysis
results and insight on high risks.

 Study summary: entire data path from initial sensing to
final actuation is vulnerable.

Let’s examine where the vulnerable assets and exposed in-
terfaces are. Main attack surfaces, shown in Figure 5, include
exposed interfaces and are broken by vulnerable assets
(internal or external). Attackers have a range of options, they
can, for example, generate false data on a sensing platform,
modify data on the internal communication channel, gener-
ate undesirable ADAS output data on the fusion brain plat-
form, change output data on the internal communication to
the actuation ECUs, manipulate firmware and software on the
output platform to make the system fail.

Our analysis reveals that there is a set of data properties
especially vulnerable to manipulation. Beyond the basic at-
tack on data values, as summarized in Figure 5, vulnerabilities
exist if syntax, semantics, timing, availability, and correlation
are manipulated. Data syntax refers to some of the properties
associated with the content, for example, output from LDW
could be played via audio device where volume of the output
warning is defined as data syntax. Change of audio volume to
undesirable level is a realistic threat to LDW function.

Given the diverse types of data being generated and
processed in the ADAS, not only forged data or incorrect
data content has impact to the system, but also whether
the data is in time for consumption, or available at all are
intrinsically important issues for ADAS control system.
Missing data or delayed data may cause the system fail to
generate appropriate intelligence, or respond to situations
in real time. Furthermore, the sensing fusion algorithms rely
on potentially multiple streams of data. Some algorithms
have requirement that streams of input data are received
and processed in correlated sequence. Hence, attack
actions that can successfully change the correlation to
further manipulate the behavior of sensing fusion.

In terms of undesirable consequences, as summarized
in Figure 5, the compromised ADAS system could cause
false positive or false negative warnings or actuation actions.
In false positive case, the ADAS system could generate warn-
ing or take unnecessary actions on vehicle control system to
respond to falsely computed “need to warn or take action”
situation, whereas the actual driving condition may be still
normal. On the other hand, the false negative outcome
could cause the system fail to respond to potential danger
happening on the road. Furthermore, the control decision
could still be relevant, but only relevant to the past condition,
a little too late current. All these undesirable outcomes could
potentially lead to unsafe driving consequences, cause a
collision, or even loss of human life. These consequences

Figure 5. Summary of Threat Analysis Results

SENSING
INPUT

SENSING
INPUT

SENSING
INPUT

SMART SENSOR
PLATFORM

ADAS FUSION
BRAIN PLATFORM

SMART SENSOR
PLATFORM

SMART SENSOR
PLATFORM

OUTPUT
HDMI

ACTUATION
CONTROLLER

DATA

MAIN ATTACK SURFACES MANIPULATION ON DATA MAJOR CONSEQUENCES

• False Positive
• False Negative
• Delayed Actuation
• Failure in Enabling Control
• Failure in Disabling Control
• User Mistrust
• User Discomfort

• Syntax
• Semantics
• Timing
• Availability
• Correlation

External Input
• Interface
• Processing

Internal Processing
• Processing
• Communication

External Output
• Interface
• Processing

8

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

are very specific to the vehicle control system and defeat
its primary design goal: improving driving safety.

Other consequences may include failure in enabling or
disabling ADAS control. In addition, frequent failures in
reporting accurate driving conditions can cause user’s mis-
trust of the ADAS system and turn off the system all together.

ADAS system can also be compromised to defeat the goal
of improving driving experience. For instance, in the case
of ACC, to maintain a proper speed, the vehicle may be ma-
nipulated to speed up or slow down suddenly, or repeatedly
take these actions. Such outcome is apparently not desirable
to the driver and to passengers.

5. ADAS System Security Requirements
Given the threat analysis results and insights in highly
vulnerable parts of the system, we examine security and
system requirements that will provide guidance in designing
security solution for ADAS.

5.1. Control System Security Requirements
Security requirements for ADAS control system are primarily
derived from threat analysis results. We take LDW and ACC
as case studies, and focus most efforts on understanding
how attackers could launch the attacks that could cause the
system to act outside its control system specification. That is,
the system that achieves the control system objectives.

Therefore, the overall security objective on ADAS control
system is to:

 Defend the ADAS control function against malicious
attacks, so that the ADAS control function can achieve the
expected specified behaviors: delivers warning or takes
necessary actuation actions in real time that accurately
reflect the current driving condition and according to
reasonably accurate prediction of potential danger.

To support this objective, the secure ADAS control system
should satisfy the following major requirements.

• R1. Availability The system and functions should ensure
that data and processing capability are available to satisfy
the needs by ADAS fusion and intelligent actions.

• R2. Real Time Delivering of warnings/actions should
be in real time to be useful.

• R3. Accuracy Warnings and actions correctly
and accurately reflect the current driving condition
and accurate enough prediction of potential
incidents on road.

• R4: Reliability System is able to predict potential
dangerous conditions with high probability and low
error rate; Ensuring such capability when system is
under attack.

These requirements are fundamental for a secure ADAS
control system. They shall be used guidelines when design-
ing and implementing the ADAS system. In the complete
ADAS data path, assets that satisfy these requirements
include all types of data, sensing modules, actuation mod-
ules, any processing modules, and internal communication.
Further decomposition is needed when it comes to the need
to design solution to protect a specific module or a specific
set of modules in the ADAS system.

On sensing modules, initial calibration and on-going operation
are the focus. Sensing data is required to be available in real
time, accurately reflect the sensing condition, and reliable to
tolerate most of unexpected conditions.

On actuation modules, similarly, the focus is on initial calibra-
tion and on-going operation. In particular, it is required that
incoming actuation commands are processed in real time
and accurate manner. The actual actuator should execute
the commands accurately, fast, and reliably under various
conditions. The actuation function should be available and
continuously in correct operation status.

On internal processing modules, software and hardware
protection should be in place to ensure that the supporting
data is 1) available; 2) not delayed or rushed; 3) content is
authentic and integrity protected; 4) syntax is correct; and
5) correct correlation in multiple sensing streams is main-
tained. To accomplish these objectives, the major software
and hardware components for any internal processing
module should:

• Provide boot time system integrity protection against
malicious software modification

• Provide run time execution protection against
malicious modification

• Ensure processing latency protection against malicious
system jamming or denial of service

On internal communication, to protect data properties, the
protocols should ensure integrity, authenticity, availability,
freshness, and timeliness of any data internally communicated.
These requirements can be used to further derive specific re-
quirements on functions for internal communication, including
managing communication keys, handshakes, communication
buffering, and actual data distribution.

9

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

5.2. Lifecycle Management Security Requirements
Like other secured systems, the functions and the archi-
tecture that support ADAS functions should start secure,
run secure, and stay secure. Security from cradle to grave
is a critical requirement to maintain ADAS lifecycle integ-
rity. ADAS system consists of multiple components and the
internal communication. This makes security of lifecycle
management more challenging compared with a traditional
computing system or any other systems that only deal with a
single main processing module. In this section, we pay close
attention on security management of ADAS ensemble and
modules that specific for ADAS or automotive. Readers can
refer to literature for secure lifecycle management require-
ments for stand-alone computing modules.

5.2.1. Start Secure
Primary goal at this stage is to establish secure provisioning
of ADAS components, and the trust relationships between
components. Below are some key requirements:

• Establish Root of Trust (RoT): A trusted owner of the entire
system to be established and held accountable of ADAS
system configuration and management. This common RoT
is the foundation for ADAS components to establish secure
relationships and communication keys as required by
ADAS operation.

• Deploy trustworthy HW and SW trust modules: It is
required that the initially provisioned system hardware
and software modules are trustworthy and are the
authentic version by the authority. The system is also
required establish the authority as the trusted party,
and provide mechanisms to allow third party to gain
proof that the system is running trustworthy modules.

• Establishing integrity policies among components:
There should exist policies and mechanisms that allow
each individual component to establish and prove its trust
status to other components, as well as for the components
to establish and prove their trusted status as a whole
architecture and group.

5.2.2. Run Secure
Once the ADAS system starts to run, the following are some
high level requirements.

• Invoke trusted system only: Upon system boot, only the
provisioned trusted hardware and software can be booted.
Any forged components should be detected and prevent
from loading into the system.

• Validated input only: Mechanisms should be invoked here
to validate the input. In particular, there are interfaces
exposed externally to acquire input from physical world.
Mechanisms that are used to protect input at these inter-
faces are still in their infancy.

• Detect runtime attacks: It is required that system should
at least detect attacks when they happen in the system.
To do this, the system is required to generate information
of system status that differentiates between “normal”
conditions vs. “under attack” conditions.

• Prevent runtime attacks: A stronger requirement for
system to “run secure,” is to invoke mechanisms that
prevent the system from being attacked at runtime.
Solutions that satisfy this requirement may be built-in
design in the system architecture, or additional security
mechanisms/protocols that protect the operation
and data.

5.2.3. Stay Secure
Changes occur in ADAS system with respect to individual
components and managing the ADAS trusted ensemble.
Whether it is about updating/patching hardware and soft-
ware on individual components, or on updating trust rela-
tionship among group members, the following are the high
level requirements to be satisfied in order to maintain the
trusted ADAS ensemble.

• Integrity protected

• Authenticated source to provide update

• Update with authorized modules only

• Freshness in update process

• Proper trust foundation re-establishment on
updated components

• Group-based authenticity and integrity protected

6. Secure End-to-End ADAS Data Path
This section offers some thoughts on how to design and
develop solutions to support ADAS security requirements.

Given our analysis of threats and security requirements,
the overall goal for securing ADAS function has emerged:
ensuring protection of data collection, processing, and
control system execution for ADAS use cases. We are in the
mission of securing the end-to-end ADAS data path: from
collection to final consumption. Security solutions should
be designed to secure ADAS path with four major areas of
concerns: 1) secure Real-time Sensing and Input, 2) internal
data processing, fusion, and decision making, 3) trustworthy
and reliable output, and 4) trusted internal data dissemina-
tion. Furthermore, lifecycle management issues will be
addressed together with control system security in our
solution discussion.

Note 1: The discussion on securing diagnosis and auditing
functions that require separate architecture from main ADAS
system and are considered out of scope for this document.

10

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Note 2: We don’t necessarily limit ourselves in a specific
solution space. As general discussion, all solution
spaces—hardware, software, firmware, system,
networking, and services—are under consideration.

6.1. Summary—Solution Areas
To secure the end-to-end ADAS data path, the main solution
areas should concentrate on following five areas:
1. Common trust basis for computing platform

2. Securing sensing

3. Securing actuation

4. Securing internal processing

5. Securing ADAS ensemble (trust management
and communication)

Their relationships can be described at high level,
as illustrated in Figure 6.

To handle input, or output, or internal processing, any com-
puting platform should have a set of basic security features
that establish basic trust on these computing platforms.
Beyond this basis, each computing platform may be required
to enable additional security solutions that meet specific
security and functional requirements for input, output, or
internal processing respectively.

As illustrated in Figure 6, for sensing ECUs, the primary tasks
for security solution are protected sensing and trustworthy
communication to distribute sensing information to con-
suming components in the ADAS system. For actuators, the
ADAS specific security protection is trustworthy actuation,
and communication for receiving actuation commands and
other management messages. For main ADAS main fusion
platform, the center of the solution stack is on trusted data
fusion processing.

Figure 6. Summary of ADAS Security Solution Areas

SECURE ADAS ENSEMBLE

SECURED SMART
SENSOR PLATFORMS

SECURED ADAS
FUSION BRAIN PLATFORM

SECURED ACUTATION
PLATFORMS

ADAS Group Key Management Secure in-Vehicle Comms Protocol

Sensing ECU Integrity Protection

ADAS Data
Comms

ADAS Data
Comms

ADAS Data
Comms

ADAS Group
Mgmt

ActuationADAS Data
FusionSensing

Trusted Platform Foundation Trusted Platform Foundation Trusted Platform Foundation

System Integrity Protection Acutation ECU Integrity Protection

Furthermore, the trust relationships between these platforms
and how they establish secure communication to support
security requirements on data flows are also critical. In this
area, there are key management issues among platforms,
and issues of securing data paths and channels. To facilitate
trusted ensemble management, there should be a module
to manage the ADAS group. Here, we hypothetically put this
functionality on the central fusion platform, given its unique
position that allows it communicate with every other compo-
nent in the ADAS system. This function could also be enabled
by a specially designed module as a completely separate
component in the system.

In the rest of this section, we discuss each solution area in
more detail. Again, we mainly focus on how each component
in the system can leverage security technology to satisfy
security requirements for ADAS control system and lifecycle
management. In some of the areas, the existing security tech-
nology needs to be re-engineered or re-designed to meet
ADAS requirements.

6.2. Secure ADAS Computing Platforms
Computing platforms in ADAS include sensing platform, the
ADAS main processing platform, and the platforms for actua-
tion. All these platforms should establish a set of primitives
as trust foundation for supporting ADAS security operations.
Figure 7 demonstrates these primitives at the conceptual
level. Note that the actual instantiation of these primitives
is case by case depending on the target platform or micro
controller. Also, this is a demonstrative security profile. We
do not require that every ADAS component to support all
of these primitives. This is especially the case for resource
limited micro controllers. Nonetheless, for the completeness
of discussion, it is important that the trust foundation covers
major areas of issues for protecting basic functions that an
ADAS component relies on.

11

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Figure 7. A Menu for Security Ingredients for ADAS
Computing Platform

COMMON SECURITY FOUNDATION

Attestation Service Secure Network Stack

Authenticated Recovery Trusted FW Update

PCIe*/DDR/PCI
I/O Protection Virtualization Protected/

Isolated Memory

CPU Crypto
(AES/SHA, etc.) Secure Storage Secure IDs

HW Root of
TrustTPM Secure/Verified Boot

In summary, a platform is responsible for four major security
goals in order to support ADAS functional security.

Goal #1: Establish and Maintain Platform Integrity

Goal #2: Support Secured Update

Goal #3: Protect ADAS Processing and Operations

Goal #4: Protect Data Communication

Establish and Maintain Platform Integrity
Platform integrity is the basis of trust for the platform. In this
category, the platform should enable primitives to form a
trusted computing base: trusted platform module (TPM) or
equivalent component, HW root of trust, secure IDs, secured
storage, protected crypto engine. Based on these primitives,
other basic security functions can be established, including
secure/verified boot, attestation of system and firmware.

Support Secured Update
The platform should have capability to continuously watch
itself for integrity protection. In the case of corruption, on
either BIOS, firmware, OS, or on software, the authenticated
recovery technology should be invoked to ensure the system
can regain its integrity with the authenticated image. Further-
more, the trusted FW/SW update technology is part of trust
foundation to ensure system can be securely patched.

Protect ADAS Processing and Operations
Protection on ADAS function operations on the platform is
needed to achieve security requirements R1—R4. The execu-
tion integrity is the first priority. Furthermore, internal data
structure and buffered data should be protected from mali-
cious tempering. For this purpose, the security foundation
can provide primitives for boot time and run time execution
protection. Example primitives could include secure/verified
boot, secure storage, protection memory for execution isola-
tion, and virtualization.

Protect Data Communications
To ensure strong protection on internal communication for
ADAS data, one could enable technology to protect channels
directly. This may include I/O protection on platform and
system, as well as the secured network stack support. Fur-
thermore, the security protocol should be in place to ensure
that data transportation satisfies the requirements: authen-
ticity, integrity, freshness, completeness, and timeliness. The
communication driver should be operated in the protected
execution environment with support of HW root of trust and
secure identities for necessary cryptographic operations
and validations. Also, the networking buffer operated by the
driver should be in a protected memory region to prevent it
from being malicious tampered.

6.3. Intel ADAS Platform Security Foundation
Intel is uniquely positioned to provide full hardware, firm-
ware, and software support to ADAS trusted foundation.
Intel continues to enhance systems so they run more
securely. A key component of this approach is providing more
robust, vulnerability-resistant platforms. Security features
are embedded in the hardware of Intel® processors, some
of which will be deployed and leveraged in future ADAS
systems. The following is some sample technology that
combines the hardware strength from Intel® platforms and
comprehensive software security solutions from McAfee,
offering great potential to enable strong ADAS E2E solutions.

Intel® Boot Guard for secure boot
Intel® architectures provide temper-resistant hardware
modules, such as authenticated code module (ACM)-based
secure boot that verifies a known and trusted BIOS is booting
the platform. It is the foundation of trustworthy system boot
and execution.

Intel® Platform Protection Technology with BIOS Guard
BIOS Guard supports hardware-assisted authentication
and protect against BIOS recovery attacks, along with other
platform protection technology, ensuring fundamental
platform protection.

Intel® Platform Protection Technology with Platform
Trust as basis for ADAS key management
Platform Trust provides integrated solution for secure
credential storage and key management. This feature may be
utilized for enabling secure ADAS ensemble key management
and serving as the basis for trusted ADAS communication.

Intel® Trusted Execution Technology (Intel® TXT)
enhancing platform security
To protect against attacks toward hypervisor and BIOS,
firmware, and other pre-launch software components,
Intel® Trusted Execution Technology (Intel® TXT) provides
hardware-based technology to establish a root of trust
through measurements when the hardware and pre-launch
software components are in a known good state.

12

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Hardware-Assisted Intel® Data Protection Technology
With Intel® AES New Instructions (Intel® AES-NI), Intel®
Secure Key instruction, and Intel’s Digital Random Number
Generator (DRNG), users gain combined value of solid
cryptographic foundation support from Intel platforms.

Intel® Virtualization Technology (Intel® VT) securing
ADAS workloads
On shared virtualized hardware, a set of ADAS workloads
can co-locate while maintaining full isolation from each other,
freely migrate across infrastructures, and scale as needed.
Intel® Virtualization Technology (Intel® VT) provides hardware
assist to virtualization software, eliminating performance
overheads, and improving security.

Intel® Software Guard Extensions (Intel® SGX)
for targeted ADAS execution protection
With a new set of CPU instructions, Intel® Software Guard
Extensions (Intel® SGX) could provide ADAS application capa-
bility to set aside private region of code and data, allowing
application to protect sensitive data from unauthorized
access or modification by rogue software, or enabling the
platform to measure ADAS application’s trusted code and
produce a signed attestation.

TrustLite: Lightweight Trusted Execution Protection
Technology4 for small ECUs in ADAS
The technology developed in Intel Labs to enable
protection on execution on very resource-constrained
SoCs or platforms. Potential protection on every small
ECUs (sensing, processing, or control) become possible
with TrustLite,4 enabling Secure Loader, Secure Exceptions/
IPC, and Lightweight Isolation Execution.

McAfee Deep Defender and DeepSAFE defending
malware attacks
Anti-malware solutions work with the Intel hardware
features to run beyond the operating system to detect
covert stealth attacks.

McAfee Embedded Control to protect fixed-function
ADAS modules
Fixed-function modules, including ADAS fusion brain plat-
form are protected against any unauthorized change on the
application with McAfee Embedded Control technology.

Intel is thriving to develop platform protection foundation
across various form factors, making E2E ADAS system pro-
tection possible. The rest of this section discuss specific
additional treatments for secure sensing, actuation, data
fusion, and ensemble management.

6.4. Secure Sensing
Sensors are at the starting line of the ADAS data path. The
sensing input has critical impact on overall correct operation
of ADAS functions. Leveraging the common trust founda-
tion, one can ensure that the smart sensing platform satisfies
the requirements and enables a trusted computing base for
ADAS sensing function, and secured sensing data communi-
cation. For the platform that supports smart sensing, there
are few issues that require special attention and treatment.

• Lightweight Security Mitigation
The variety of sensing platforms demands that the security
solutions should be customized to be suitable for the tar-
get platform resource constraints and cost limit. For some
of the lightweight sensors, the full protection package as
described in Section 6.2 is not feasible. Tradeoffs between
cost and just enough security are needed.

 For small scale micro controllers, the trusted computing
base may be as small as a protected memory region for
sensing execution. To minimize the complexity, the system
could be required to support only a static version of the
sensing algorithm firmware. No other software or firm-
ware can be inserted to the system without authorization.
Such concept can be realized by an embedded controller
whitelisting solution. Furthermore, the cryptographic
support of small scale embedded controller may be
simplified as well. The goal, is to support “just enough”
for customized protection on the sensing platform.

• Trusted Graphics Processing
Some of the sensing platforms used in ADAS require
powerful graphics processing. For instance, the front-view
and side-view cameras operate to capture frame streams
at high frequency in real time and generate initial graph-
ics models, and output to main ADAS processing platform.
To meet the performance requirement, the platform may
integrate a GPU to facilitate demanding graphics process-
ing. In such architectures, the additional care of security
is needed on GPU processing and data paths to ensure
authenticated data flows between GPU and CPU, as well
as the trusted execution environment support on GPU.

• Sensing Integrity Protection
Smart sensing platforms interact with physical environment
directly. Trusted ADAS operations rely on authentic, com-
plete, and fresh source of information, which is the main task
of sensors in ADAS. The challenging objective is to provide
sensing integrity technology that can ensure the generated
models by the sensing platform accurately and correctly re-
flect current physical condition in real time. This is, currently,
a technology gap to be filled with further innovation.

13

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

6.5. Secure Actuation
The secure actuation platform is on the final consuming phase
of ADAS data path. Similar to sensing platform, actuation
ECUs could leverage the common trust foundation for target
security requirements. For the platform that supports reliable
actuation, there are few issues that require special attention
and treatment. Some of the issues are similar ones that the
smart sensing platform faces.

• Lightweight Security Mitigation
Actuation platforms are typically small scale and support
singular functionality. For these smaller scale controllers,
the full protection package as described in Section 6.2
is not feasible. Tradeoffs between cost and just enough
security are needed. Again, the minimized trusted comput-
ing base, as required for small sensors, is also required for
small scale actuation platforms. Hence, lightweight cryp-
tographic engine and embedded controller whitelisting
solution are of special consideration to support lightweight
security mitigation on actuation.

• Actuation Integrity Protection
Actuator ECUs manipulate control mechanics of the vehicle
directly. Taking authentic input command and making sure
the execution is faithful and timely are critical to the overall
ADAS system security and reliability. Any failure of actua-
tor ECUs could have catastrophic and fatal consequences.
While most actuator ECUs are implemented to satisfy
highest safety requirements, we need to enable security
protection on these ECUs so that possibility of triggering
failures cannot increase when the ECU becomes the target
of malicious attack.

 Here, the challenge of ensuring integrity protected actua-
tion has not been fully met, which remains a technology
gap to be filled with further innovation.

6.6. Secure ADAS Main Data Processing
As the main “brain” of ADAS system, the ADAS main pro-
cessing platform demands full security protection. It is the
best practice to enable strongest security protection on this
platform given its critical function of data fusion. The good
news is that the target platform is relatively more powerful
than sensors and actuators. Therefore, a full set of security
primitives can be made available on the main platform for
integration to ADAS internal data processing protection.
There are three particular considerations on main platform
worth further discussion.

• Maintain Functional Simplicity
As powerful as it should be for processing high volume
of data in real time and generate accurate models from
multiple data streams, the main ADAS computing plat-
form in fact supports relatively less complex functionality:
generate control commands to manage vehicle operation,
given current driving condition. Unlike a typical computing
platform in IT world (e.g., desktop, laptop, or smartphone),
the ADAS computing platform only supports a few algo-
rithms and a few ADAS use cases.

 With this observation, it is important for the ADAS main
computing platform to maintain its simplicity. The security
technology that ensures only a few authorized applica-
tions, such as whitelisting, can be invoked. And unauthor-
ized installation or modification of the ADAS application
software should be detected and denied.

• Protecting Real time Operating System and Software
Huge work loads of ADAS main platform and the real-time
reaction requirement could drive the system architecture
to be supported by a real-time operation system. This
means, the security ingredients that are traditionally tied
to a specific operating system should be re-engineered
or re-designed to be suitable for the real-time operating
system and software. Example of such technology may
include boot time/run time integrity protection, attestation,
anti-malware solutions, and trusted recovery technology.

• Multi-interface Protection and Isolation
The main ADAS computing platform is situated in the
unique position in the vehicular control system that it has
various interfaces that essentially connect to every parts
of the ADAS system, from user interface, physical sensing,
and to passing commands to ECUs. The more interfaces
it has, the higher probability that the system may be at-
tacked. Therefore, protecting each interface, as well as
isolating these interfaces are critical to the system to have
any hope of maintaining its integrity. On the main ADAS
computing platform, an integrated isolation solution,
such as “Trusted Execution Environment + Protected Data
Path” should be carefully designed and implemented.
Additional challenge in this task is that the resulting solu-
tion has to also meet the “minimized latency” requirement
as mandated by the real-time system.

14

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

6.7. Secure Connected Ensembles
The security system for intra-vehicle data communication
for ADAS function consists of three components:
• Integrity assurance of communicating modules

• Key management that establishes trust between modules

• Secure communication protocol

Integrity Verification
The integrity of platforms serves as the basis for establishing
trusted channels between them. Here the local attestation
or integrity verification solution is required to establish that
the modules maintain their integrity of the system. The integ-
rity demonstration to modules serves as the basis of trust for
further establishing protected channels.

Furthermore, if there is a need that a group of modules to
establish trusted communication, the basis of trust among
them could be established via a group-based attestation
solution. There are some technology in the literature, could
be used as the basis for constructing group-based attesta-
tion. Yet, to our best knowledge, this is an open challenge
for securing ADAS group.

Secure Communication Protocols
For data distribution, we need to enable trusted data paths
across platforms in the ADAS architecture. As identified
in threat analysis, the primarily concerned data channels
are mostly bi-directional from the main ADAS processing
platform to all other platforms including: smart sensing
platforms, platform for user input, ECUs for status report
and actuation control. The primary issues for protecting data
flows are the data properties that directly impact functional
goals of the entire ADAS control system: availability, real-
time, reliability, and accuracy.

Supporting secure communication among ADAS modules
is a non-trivial problem. As demonstrated in threat analysis,
given the expected adversarial model, communication
channels can be fully under control by adversaries. To
protect data flows on these channels, security protocols are
required. Security primitives such as HW root of trust, secure
identities, and secured cryptographic engines are required
to support cryptographic operations and validation by the
secure communication protocol. In addition, the complexity
of supporting secured communication comes from two
issues: diverse channel types and diverse data flows.

For security design, different layers of network stack have
their own security issues and suitable solutions. In ADAS
system, there exists diversity of communication channels:
Ethernet, CAN, FlexRay, and other proprietary channels.
Different type has its own security issues. And existing
solutions are different in terms of the technology maturity.
For instance, for Ethernet links, existing TCP/IP stack and
their security countermeasures could be suitable to secure
communication. On the other hand, the CAN protocol is
currently still vulnerable to malicious attacks and the solu-
tion is still under development in the standards groups and
by industrial consortia. Here, the main issue with enabling
secure communication in ADAS system is primarily on ensur-
ing interoperability, so that modules from different vendors
could be easily integrated to construct secure intra-system
communication in an ADAS system.

The communication protocols may not be always pairwise
between modules. Depending on the ADAS use case, there
could also be group-based communication. For instance,
in the case of multiple sensors serving together for ACC
function in ADAS, there may be needs to ensure multiple
front-view cameras work together to ensure reliable
modeling of front view road condition. There may be group-
based communication flow among these cameras, the corre-
sponding sensing platform(s), and the main ADAS processing
platform. That means security protocols should be designed
and deployed among these modules that satisfy specific
requirements by such group communication workloads.
Hence, individual modules in ADAS system should provision
and invoke these additional components that support data
flow protection, whether it’s pairwise based or group base,
or any form of relationship.

Key Management
To support secure communication protocol, the secure com-
munication sessions should be established. The goal of key
management is to establish session keys or the keys used to
protect the communicate channel between parties. In ADAS
system in general, the communication is required to support
data availability, freshness, integrity, and authenticity. Hence,
the keys used to achieve these goals should be established
properly before the modules could engage with the secure
communication protocol for exchange data. The property of
these keys depends on the choice of target security protocol.

15

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

The basis of establishing keys is from the trust relationship between the modules. The trust relationships should be repre-
sented by the security credentials that can authenticate the modules. In addition, the binding of the module’s current status
with its authentication credentials could be required to establish the trust. To achieve this goal, the system needs to utilize the
integrity verification function. Such verification may be required to be mutual: mutual authentication and mutual attestation.
Furthermore, the group-based authenticated communication requires group-based trust relationship, hence requires member
authentication in group and group-based attestation.

Technology foundation in this area exists. The suitable solutions for ADAS should be designed to meet the architectural
requirements and specific communication security requirements.

7. Conclusion
This paper details the security issues that directly impact the ADAS system functional safety goals. Key security issues are
identified via threat analysis case studies. Security requirements are derived from every parts of the ADAS architecture. Key
security objectives are defined to support ADAS control system integrity, data protection, and lifecycle management. Various
pieces of the security architecture and solutions are identified that can be put together to protect the vehicle’s operation with
ADAS system. There are many architecture specific details to be worked out. More learning comes from actually doing
experiments. Further work is along with a few specific directions:

1. Further exercise and experiment for a specific ADAS architecture; engineering work to enable ADAS security solutions,
advancing the secure ADAS system to be reality.

2. Proof-of-concept and experiments:

a. Integration of primary security technology with a target ADAS use case.

b. Validate effectiveness of solutions for control functional safety.

c. Evaluate performance overhead and impact on functional correctness.

3. R&D efforts to tackle challenges and technology gap in ADAS security, both from functional and performance perspectives.

4. Security impacts on functional safety for automotive: detailed analysis, and community consensus building in the context
of automotive standardization.

References
1 Checkoway et al, “Comprehensive Experimental Analyses of Automotive Attack Surface,” USENIX Security, Aug. 2011

2 Koscher et al, “Experimental Analysis of a Modern Automobile,” S&P 2010

3 Rouf et al, “Security and Privacy Vulnerabilities of In-Car Wireless Networks,” USENIX Security, Aug. 2011

4 Koeberl et al, “TrustLite: a security architecture for tiny embedded devices,” In Proceedings of the Nineth European
Conference on Computer Systems (EuroSys ‘14)

16

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

A.1. Lane Departure Warning Usage Case
The lane departure warning (LDW) use case refers to a spe-
cific function by the ADAS system that enables the vehicle
to sense and calculate model to determine if the vehicle is
moving in the lane properly. The calculation is ongoing and
the system generates warning to driver if the LDW module
determines that the vehicle is currently outside the intended
lane, or is about to cross the lane line, departing the current
lane. Figure 8 demonstrates a conceptual system architecture
that enables LDW function.

In particular, the input taken from sensors include frames
captured from front cameras in real-time, and speed and
steering position of the vehicle as captured internally
through CAN bus. The incoming frames are consumed by a
sensor pre-processor, which uses the frames to recognize
objects, such as lane lines, and generates graphical model of
driving condition with respect to LDW. The graphics model(s)
are then transmitted to the main processor that fuses sens-
ing information from both the graphics models and current
conditions of the vehicle, and generates LDW output as the
outcome of calculation. The output can be in the form of
video/audio to the corresponding output interfaces.

A.2. Adversarial Model
The expected adversary to LDW usage case are the
attackers who can launch simple HW attacks with the
capability of “university challenge.” This means:

• Expected attacker capability: Simple HW attacker

 – Has reverse engineered all firmware, SW

 – Can modify and replace all firmware, SW

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged
malware onto any micro-processor that
communicates through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in
alternate environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K
part/equipment/computation to develop tools to attack
many vehicles

A.3. Threat Analysis
A.3.1. Assets and Interfaces
To analyze all threats, the ADAS system is decomposed
to assets. Threats on each asset are the threats to the
entire system. Assets can be a piece of software, hardware,
or data structure. We treat assets as atomic modules in the
system. The threats on assets are launched through inter-
faces, each assets exposed, including input interfaces
and output interfaces.

Figure 8 summarizes the relationships between assets. Table
I enumerates all assets and the corresponding interfaces.

Appendix A. Threat Case Study #1: Lane Departure Warning (LDW)

Figure 8. Lane Departure Warning System Block Diagram

FRONT
CAMERA

FRONT
CAMERA SE

N
SO

R
P
R
E-

P
R
O
C
ES

SO
R

DRIVER
DISPLAY

AUDIO
SYSTEMCOMPUTING PLATFORM

Clock Code

Main CPU Data

Video
Out

Audio
Out

CAN Network

Speed, Stearing
Position

AVB/
Ethernet

Frames

Frames/
75 Mbps

17

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

ASSET
ID

ASSET
NAME

INPUT
INTERFACE ID

INPUT
INTERFACE

FROM
ASSET

OUTPUT
INTERFACE ID

OUTPUT
INTERFACES

TO
ASSET

A1 Camera C1.1 Lens to
front view External O1.1 AVB/Ethernet

interface A2

A2 Sensor pre-
processor C2.1 Ethernet port A1 O2.1 Internal bus A3

A3 Main processor
C3.1 Internal bus A2 O3.1 Video port A4

C3.2 CAN port A6 O3.2 Audio port A5

A4 Audio system C4.1 Audio
input port A3 O4.1 Speaker External

A5 Driver graphics
output C5.1 HDMI

input port A3 O5.1 Display External

A6 ECU status
reporter C6.1 ECU specific

ports Internal O6.1 CAN bus A3

A7 Frames C7.1 Ethernet
channel A1 O7.1 Ethernet

channel A2

A8 Graphics
models C8.1 Internal bus A2 O8.1 Internal bus A3

A9 Audio warning C9.1 Audio
channel A3 O9.1 Audio channel A4

A10 Graphical
warning C10.1 HDMI

channel A3 O10.1 HDMI channel A5

A11 Velocity info C11.1 CAN
channel A6 O11.1 CAN channel A3

A12 Steering
wheel info C12.1 CAN

channel A6 O12.1 CAN channel A3

Table 1. Assets in LDW Architecture

In this definition, each asset has one or more input interfaces
and one or more output interfaces. For the assets that expose
some or all interfaces externally, the interfaces are specially
labelled. Otherwise, all input interface should specify the
assets that the input is taken from, and all output interfaces
should specify the assets that the output is delivered to.

Furthermore, assets A1 – A6 are major modules in the LDW
system architecture that work together to enable the LDW
function. Assets A7 – A12 are specifically defined for the data
structure that moves between major functional assets. We
define the assets in such way to make sure the properties of
the data structures are captured. And unexpected changes to
these data structures that alter the properties are considered
attacking actions.

A.3.2. Data Structure Asset Properties
For A7 – A12 data structures, we further define all properties
of concern.

A7: Frames
• Content parseable as video frame from camera

• Resolution in proper range

• Contrast

• Brightness

• Generated frequency

• Availability

18

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

A8: Graphics model data
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A9: Audio warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

• Volume

A10: Graphics warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

A11: Speed status information
• Data structure syntax

• Data structure semantics

• Availability

• Timeliness

• Frequency

A12: Steering wheel information
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A.3.3. Threat Analysis
To analyze the threats posed by the expected adversaries, we
start from the expected behavior of the system. In general,
any attack actions that cause the system to act outside its
specification, are categorized threats to the system.

The system specification of LDW, from threat analysis
perspective, is the following:

• The LDW system should produce accurate warning in time,
based on current driving condition.

Therefore, the attacker’s goal of causing the system to
act outside its specification can be illustrated in the
following figure.

As illustrated in Figure 9, the main goal of attacker is “Cause
incorrect warning w.r.t. current condition.” It can be further
broken to three cases:

• False warning: the system produces warning to user, when
the vehicle is NOT departing the lane. Or the system pro-
duces warning to driver with unexpected properties, which
are considered as “false” as well.

• “Removed” warning: the system fails to produce/deliver
warning to user, when the vehicle IS departing the lane.

• Delayed warning: the system produces/delivers warning
not useful at present time, but may reflect past condition.

 – This threat can be considered as the combination of
“Removed” Warning and then False Warning.

The consequences of attacking LDW may include
the following:

• False warning:

 – Incorrect warning cause driver panic and potential colli-
sion that cause lost of life and damages of properties

 – In-accurate warnings (maybe too many of them) cause
decrease user’s trust on LDW system, and the user
could eventually ignore the LDW system totally

19

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

• “Removed” warning:

 – Lack of warning to reflect current condition is
equivalent to the vehicle WITHOUT LDW system.

 – If driver relies on LDW system to react to condition,
the driver’s reaction to dangerous condition could
be delayed

 – Potential collision and/or other fatal consequences

• Delayed warning:

 – Consequences are the combination from False Warning
and “Removed” Warning

False Warning Threat Analysis
Table 2 summarizes threat analysis results for False
Warning Threat. The threats are categorized into threats
on “input data,” “internal process,” and “output data.” The
goal is to identify all external/internal interfaces of LDW
system assets that attacker can manipulate to conduct
actions and cause the system to produce False Warnings.

Summary
• Manipulation of input data properties have direct impact

of LDW function correctness

 – Accurately represent current condition (incoming
frames and vehicle status)

 – Both content and properties are important

• Internal processes are vulnerable because of

 – Malware threats on sensor pre-processor and main
LDW algorithm for fusion

 – Internal communication on Ethernet channel, CAN bus,
internal bus, as well as output channels

Figure 9. Threat Analysis on LDW Architecture

FRONT
CAMERA

FRONT
CAMERA SE

N
SO

R
P
R
E-

P
R
O
C
ES

SO
R

LDW: INCORRECT WARNING W.R.T. CURRENT CONDITION

FALSE WARNING “REMOVED” WARNING DELAYED WARNING

DRIVER
DISPLAY

AUDIO
SYSTEMCOMPUTING PLATFORM

Clock Code

Main CPU Data

Video
Out

Audio
Out

AVB/
Ethernet

Frames

Frames/
75 Mbps

CAN Network

20

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

MAJOR
THREATS

SUB
THREATS

TARGET
ASSETS

TARGET
INT ACTIONS

Input Data

Camera take input A1 C1.1 • Fake env. condition for camera lens

Camera process input A1 N/A • Insert forged frames directly in camera
processing and memory

• Infect camera firmware to produce forged
frames that indicate lane departure

Camera delivers frames A1, A7 C1.1, O1.1, O7.1 • Frames are modified with property change: e.g.,
blurry frames to confuse modeling software.

• Insert forged frameworks to indicate lane
departure

• Remove frames that indicate “normal” condition

Vehicle operation status
report

A6, A11, A12 C6.1, C11.1,
C12.1, O11.1,
O12.1

• Block delivery of speed and steering wheel
information

• Rush/delay delivery of status information
• Forge speed information: pretend moving fast to

confuse modeling algorithm
• Forge steering wheel information: report turning

when vehicle moves straight, or report straight
when vehicle is turning

Internal Process

Process frames to
generate models

A2 C2.1 • Insert malicious code that processes frames and
generate models (malware)

• Modify internal memory with forged information
 – Insert frames indicating lane departure

Output models to further
LDW alg.

A2
A8

O2.1, C8.1, O8.1 • Insert malicious code that process
output models

• Modify internal buffer that stores models
 – Modify generated models
 – Delete models
 – Insert forged models

• Internal bus channel manipulation
 – Same actions as on output buffer

LDW alg. to fuse sensing
data, and generates
warning

A3 C3.1, C3.2 • Insert malicious code that fuses sensing data
and generates warning (malware)

• Modify internal memory with forged information
• Insert models that directly indicate lane

departure

Deliver output warning to
output devices

A3
A10

O3.1, C10.1
O10.1

• Insert malicious code that process output
warnings

• Modify internal buffer that stores output
warnings

 – Modify generated warnings with undesirable
properties, e.g., turn up warning volume

 – Re-order buffered warnings
 – Insert forged warnings in buffer

• HDMI channel manipulation
 – Similar actions as on output buffer

• Audio channel manipulation
 – Similar actions as on output buffer

Output Data

Output device process
received data

A4
A5

C4.1, C5.1 • Manipulate input buffer to store forged and
incorrect warning data or modify the stored
warning data

• Malware in warning data processing code to
introduce forged final signal for warning output

Output device delivers
warning

A4
A5

O4.1, O5.1 • Malfunction of A4 to deliver unnecessary loud
warning

• Output HW delivers forged warning directly
from attacker

Table 2. Threat Analysis—False Warning Case of LWD

21

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

“Removed” Warning Threat Analysis
Table 3 summarizes threat analysis results for “Removed” Warning Threat. The threats are categorized into threats on
“input data,” “internal process,” and “output data.” The goal is to identify all external/internal interfaces of LDW system
assets that attacker can manipulate to conduct actions and cause the system to not produce warning when it should given
the current condition.

MAJOR
THREATS

SUB
THREATS

TARGET
ASSETS

TARGET
INT ACTIONS

Input Data

Camera take input A1 C1.1 • Fake env. condition for camera lens
 – E.g., putting up a video to feed in camera lens

Camera process input A1 N/A • Insert forged frames directly in camera
processing and memory

• Infect camera firmware to produce forged
frames that indicate normal driving condition

• Delete incoming frames
• Delay incoming frames
• Reorder incoming frames
• Replay normal frames

Camera delivers frames A1, A7 C1.1, O1.1, O7.1 • Frames are modified with property change: e.g.,
blurry frames to confuse modeling software.

• Insert forged frames to indicate “normal
condition”

• Remove frames that indicate lane departure
condition

Vehicle operation status
report

A6, A11, A12 C6.1, C11.1,
C12.1, O11.1,
O12.1

• Block delivery of speed and steering wheel
information

• Rush/delay delivery of status information
• Forge speed information: pretend moving fast to

confuse modeling algorithm
• Forge steering wheel information: report turning

when vehicle moves straight, or report straight
when vehicle is turning

Table 3. “Removed” Warning Case of LWD (continued to next page)

Notes: Attacker actions for removed warnings are very similar
to the actions for “False Warning” case. All these actions
focus on interfaces that could:

• Manipulate input or input processing

• Manipulate output or output delivery

• Manipulate internal processing and internal
data communication

As discussed above, the “Delayed Warning” attack can be
achieved with combination of actions for “removed” warning
and false warning. Therefore, threat analysis for this third
case can be considered as union of actions as illustrated in
table 1 and 2.

A.3.4. Data Privacy Discussion
So far, we focus our analysis mostly on examine vulnerabilities
that cause the ADAS to fail its LDW functionality. Given that
the system is expected to constantly collect and process input
data from video cameras and internal CAN bus, there might be
a concern of privacy of such data. For instance, such data can
be used to track location of the vehicle, and reveal behavior
history of the driver(s).

In our analysis, we believe, there is no privacy concern if the
data is collected only for the purpose of supporting LDW
function. The rationale is the following:

• The input data, internal data, and output data are all
for temporary consumption. The data is not stored
for long term.

• Front view condition is publically available for any one of
interest. Instead of attack LDW system directly, attacker
could simply install his own camera to capture the same
or similar views.

22

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

MAJOR
THREATS

SUB
THREATS

TARGET
ASSETS

TARGET
INT ACTIONS

Internal Process

Process frames to
generate models

A2 C2.1 • Insert malicious code that processes frames
and generate models (malware)

• Modify internal memory with forged information
 – Insert frames indicating “normal conditions”

Output models to further
LDW alg.

A2
A8

O2.1, C8.1, O8.1 • Insert malicious code that process
output models

• Modify internal buffer that stores models
 – Modify generated models
 – Delete models
 – Insert forged models

• Internal bus channel manipulation
 – Same actions as on output buffer

LDW alg. to fuse sensing
data, and generates
warning

A3 C3.1, C3.2 • Insert malicious code that fuses sensing data
and generates warning (malware)

• Modify internal memory with forged information
• Insert models that directly indicate lane

departure

Deliver output warning to
output devices

A3
A10

O3.1, C10.1
O10.1

• Insert malicious code that process
output warnings

• Modify internal buffer that stores
output warnings

 – Modify generated warnings with undesirable
properties, e.g., turn down warning volume
to zero

 – Delete warnings directly
• HDMI channel manipulation

 – Similar actions as on output buffer
• Audio channel manipulation

 – Similar actions as on output buffer

Output Data

Output device process
received data

A4
A5

C4.1, C5.1 • Manipulate input buffer to remove the
warning data

• Malware in warning data processing code
to delete output

Output device delivers
warning

A4
A5

O4.1, O5.1 • Malfunction of A4 to deliver “muted” warning
• Output HW of A5 shut down by attacker

Table 3. “Removed” Warning Case of LWD

Given this reasoning, we think data privacy should not be
considered as a threat for LDW system.

However, if in the vehicle ADAS, there is a function module
that collects sensing and vehicle status information and
stores it in a non-volatile storage for other usages, such as
telematics, auditing, etc., then there is the privacy concern
that leakage of such information can be used to reveal user’s
private driving activities.

Besides data privacy, there may be a need to keeping the
details of internal LDW algorithm secret, for vendor’s IP
protection purpose. If there is such need, and the algorithm
is designed and implemented in such a way that internal data
models as input for LDW fusion can potentially reveal algo-
rithm details, there should be mechanisms to keep internal
data private, even if such data is only for temporary con-
sumption. Alternatively, the vendor could choose to design
or re-design the LDW algorithm, so that internal model data
structure won’t provide information that helps to recover
algorithm details.

23

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

B.1. Adaptive Cruise Control Usage Case
The adaptive cruise control (ACC) use case refers to another
specific function by the ADAS system that enables the vehicle
to autonomously manage its moving speed, based on the
following four sources of information:

• Current vehicle condition

• Driving condition and relative speed of leading vehicle

• Road conditions

• Driver’s preference

ACC is the advanced version of current cruise control function.
Currently, the cruise control accepts a speed set value from
driver and manages the vehicle control system to maintain the
target speed. It may takes additional sensing information for
speed management from road, e.g., up/down hill and turning.
However, traditional cruise control does not allow the vehicle
to adjust vehicle speed dynamically according to the relative
distance to the leading vehicle.

Primary intelligence in ACC is the capability of recognize
leading vehicle(s), estimate relative distance, and even
predict the leading vehicle’s next moving model.

Compared with LDW, ACC function provides additional
opportunity to analyze a more complete example of ADAS
function that involves input, internal process, and real-time
control command and actuation. Based on ISO 26262 require-
ments, LDW is generally considered as ASIL B function and
ACC is generally considered as ASIL C/D function. In other
words, ACC has more stringent safety requirements. For the
same ADAS system architecture, implementing ACC means
need to reduce exposure to failure, reduce severity of system
failures, and increase controllability when failure happens.

Appendix B. Case Study #2: Adaptive Cruise Control (ACC)

ACC function, by nature has higher severity in the conse-
quences of failure, because it involves direct vehicle control,
as opposed to only the warning through UI to driver. The
controllability is outside the consideration of this analysis.
Therefore, our focus should be on exposure to failures.
Attack actions to ACC function could potentially increase
system exposure to failure significantly. We’ll visit this issue
in risk analysis.

Figure 10 illustrates a conceptual system architecture that
enables ACC function.

The similar ADAS architecture is used to support ACC func-
tion. For ACC, the system takes different input data set, runs
the ACC modeling algorithm, and output to take actions that
manage vehicle speed. Here’s the summary:

Input:
• Speed, acceleration status (gas, brake) from CAN bus

• Graphics: front cameras, lidar, radar

• Road condition: surface condition, uphill/downhill, curves,
weather conditions (from local sensors as well as through
network communication)

ACC Algorithm:
• Leading vehicle(s) object detection

• Distance estimation

• Leading vehicle driving condition assessment
and prediction

• Hazard detection: sudden brakes, pedestrians,
traffic sign/light, speed limit, road construction, etc.

• Speed management prediction

Figure 10. Adaptive Cruise Control System Example Architecture

FRONT
CAMERA

SE
N

SO
R

 P
R

E-
P

R
O

C
ES

SO
R

ACC
CONDITION
UPDATE

SPEED
MANAGEMENT
ACTIONS

Frames/
75 Mbps

WATCHDOG

Audio/
Video

CAN
bus

CAN bus External network

AVB/
Ethernet

Models

Clock Code

Main CPU Data

COMPUTING PLATFORM

VELOCITY,
DIRECTION,
ACCELERATION
STATUS

DESIRED
INPUT
FROM
USER

ROAD CONDITION,
WEATHER INFO,
POLICY REPORT,
TRAFFIC INFO

FRONT
CAMERA

FRONT
CAMERA

LIDAR

RADAR

24

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Figure 11. Functional Flow Diagram for ACC

Smart Sensing Platform(s)

Lidar Input

Camera Input

User Input

Road
Condition

Input

ADAS Brain Platform

Low Level Controller

Vehicle
Operation
Condition

Input

Radar Input

OBJECT
DETECTION

ROAD
SURFACE
MODEL

SPEED
MANAGEMENT
ACTUATION

SWITCHING LOGIC

THROTTLE
CONTROLLER

BRAKE
CONTROLLER

OBJECT
RECOGNITION

ROAD
MODELING

OBJECT
DISTANCE
ESTIMATION

OBJECT
MOVEMENT
MODEL AND
PREDICTION

LEADING CAR
MOVEMENT

PEDESTRIAN
MOVEMENT

LANE
LINES

TRAFFIC
SIGNSDESIRABLE

SPEED/SPACE
MODELING

Output:
• Control signals to control speed and adjustment

• Information output through HMI

Figure 11 gives an example flow diagram with respective to
more detailed processing in ACC function. Focusing on the
fusion algorithms for ACC, there may be a nature separation
of processing among the main platform as ADAS brain, and
the sensing data pre-processor.

As shown in Figure 11, the smart sensing platform could be
responsible for taking input from sensors, and construct-
ing models for object recognition, and extra properties and
conditions of the detected objects. In this process, there may
be multiple sensing platforms, each handling a set of sen-
sors that provide a specific type of sensing information. In
ACC case, sensing processing for video frames from camera,
for lidar input, and radar input could be separated. There is,
however, a process used to fuse all three types of sensing
data to accomplish accurate object detection, recognition,
and distance estimation.

The models of recognized objects could then be passed
to ADAS brain platform. Here, there are multiple ADAS
use cases supported, besides ACC. More powerful fusion
process on ADAS brain takes input from smart sensing
platform, user’s input, road condition input, and vehicle
operation status from CAN bus, and conduct processes to:

• Predict object movement

• Model road surface and condition

• Calculate desirable speed for vehicle and/or desirable
distance to be maintained from the leading vehicle

• Eventually generate speed management command

The speed management commands are then passed to low
level controllers. Here corresponding throttle controller or
brake controller processes the input command and take
actions to adjust vehicle speed via throttle or brake.

Threat analysis, all these ACC fusion and control processes
are under consideration.

25

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

B.2. Adversarial Model
The expected adversaries to ACC usage case are the same
as the model used for LDW threat analysis.

Here these are the attackers who can launch simple
HW attacks with the capability of “university challenge.”
This means:
• Expected attacker capability: Simple HW attacker

 – Has reverse engineered all firmware, SW

 – Can modify and replace all firmware, SW

 – Can replace/substitute any ADAS components

 – Can remotely install privileged and unprivileged mal-
ware onto any micro-processor that communicates
through external interfaces

 – Can read/write/jam/forge the radio channel

 – Can add/remove functionality

 – Can boot/operate removed parts in
alternate environments

• Expected attacker capability: University Challenge

 – Will invest up to 6 months engineering effort and $50K
part/equipment/computation to develop tools to attack
many vehicles

B.3. Threat Analysis
B.3.1. Assets and Interfaces
Following the same analysis philosophy, we define ADAS
assets for ACC function. The architecture is slightly more
complex than the LDW architecture, due to diverse types
of input and additional actuation control command output.

Table 4 numerates assets and interfaces for ACC architecture.

B.3.2. Data Structure Asset Properties
For A12 – A21 data structure assets, we further define all
properties of concern.

A12: Frames
• Content parseable as video frame from camera

• Resolution in proper range

• Contrast

• Brightness

• Generated frequency

• Availability

A13: Graphics model data
• Data structure syntax

• Data structure semantics

• Availability

• Generated frequency

A14: Audio warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

• Volume

A15: Graphics warning
• Data syntax

• Data semantics (content delivers the intended meaning)

• Availability

• Timeliness

A16: Speed status information
• Data structure syntax

• Data structure semantics

• Availability

• Timeliness

• Frequency

A17: Lidar input
• Content parseable as Lidar sensing data

• Resolution in proper range

• Generated frequency

• Availability

A18: Radar input
• Content parseable as Radar sensing data

• Resolution in proper range

• Generated frequency

• Availability

A19: Speed change command
• Content parseable as speed change command

• Desirable speed value within valid range

• Desirable speed value reflects current driving condition

• Desirable acceleration/deceleration time window is
a valid range and reflects current driving condition

• Availability

• Timeliness

26

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Assets in Adaptive Cruise Control (ACC) System Architecture
ASSET
ID

ASSET
NAME

INPUT
INTERFACE
ID

INPUT
INTERFACE

FROM
ASSET

OUTPUT
INTERFACE
ID

OUTPUT
INTERFACES

TO
ASSET

A1 Camera C1.1 Lens to front view External O1.1 AVB/Ethernet interface A2

A2 Lidar sensor C2.1 Lidar sensing port External O2.1 Internal communication link A4

A3 Radar sensor C3.1 Radar sensing port External O3.1 Internal communication link A4

A4 Sensor pre-
processor

C4.1 Ethernet port A1

O2.1 Internal bus A5C4.2 Lidar link port A2

C4.3 Radar link port A3

A5 Main processor

C5.1 Internal bus A4 O5.1 Video port A6

C5.2 CAN port A9 O5.2 Audio port A7

C5.3 Internal bus A10 O5.3 CAN bus A7

C5.4 Network driver A11

A6 Audio system C6.1 Audio input port A5 O4.1 Speaker External

A7 Driver graphics
output

C7.1 HDMI input port A5 O5.1 Display External

A8 Low level controller C8.1
Throttle/brake
command input
port

A5 O8.1, O8.2

Internal channel (could be
CAN bus) to send command to
Throttle Controller or Brake
Controller

Internal

A9 Vehicle status
reporter C9.1 ECU specific Internal O9.1 CAN bus A5

A10 On board road
condition sensors C10.1 Sensor specific

sensing input port External O10.1 CAN bus or other internal
channel A5

A11 Weather condition
reporter C11.1 Internet driver External O11.1 Internal channel A5

A12 Video Frames C12.1 Ethernet channel A1 O12.1 Ethernet channel A4

A13 Graphics models C13.1 Internal bus A4 O13.1 Internal bus A5

A14 Audio warning C14.1 Audio channel A5 O14.1 Audio channel A6

A15 Graphical warning C15.1 HDMI channel A5 O15.1 HDMI channel A7

A16 Velocity info C16.1 CAN channel A9 O16.1 CAN channel A5

A17 Lidar input C17.1 Lidar sensing port External O17.1 Internal link A4

A18 Radar input C18.1 Radar sensing port External O18.1 Internal link A4

A19 Speed change C19.1 CAN bus A5 O19.1 CAN bus A8

A20 Road condition
sensing data C20.1 CAN bus A10 O20.1 Internal channel A5

A21
Weather information
(rain or not, and how
hard)

C21.1 Network driver/
port A11 O21.1 Internal channel A5

Table 4. Assets in ACC Architecture

A20: Road condition sensing data
• Content parseable as road condition sensing data

• Availability

• Data frequency

A21: Weather information
• Content parseable as weather information

• Generated and provided by an authorized source

• Content authenticated from the authorized source

• Timeliness

• Availability

27

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

B.3.3. Threat Analysis
To analyze the threats posed by the expected adversaries,
again, we examine the expected behavior of the system.
In general, any attack actions that cause the system to act
outside its specification, are categorized as the threats
to the system.

The system specification of ACC, from threat analysis
perspective, is the following:

• Manage vehicle speed adaptive to real-time
driving conditions

This means that the success of ACC function can be
measured by the following criteria:

• Achieve cruise control function with reasonable conditions

• Minimize danger of collision via real-time
speed management

• Minimize traffic congestion factors

• Maximize user comfort

These attacking consequences are illustrated Figure 12.

For the system design, the first two criteria are considered
as primary, given the ACC function has direct safety goals.
Therefore, the attacker’s goal of causing the system to act
outside its specification is primarily on: causing the failure
to manage proper speed to the point that the attack can
compromise the system design goal according to the
success criteria.

We are going to focus primarily on the safety critical
consequences. The rest of this section presents in more
details on the threat analysis that cause ACC safety
critical consequences.

Collision Under ACC Threat Analysis
Similar to LDW, the threat analysis is conducted on assets in
the system, for threats from “input data,” “internal process,”
and “output data.” The goal is to identify all external/internal
interfaces of ACC system assets that attacker can manipulate
to conduction actions and cause the system to cause colli-
sion. A similar table, as LWD threat analysis, can be created
for capturing all threats.

Figure 12. High Level Threats in ACC System

FAILED INPUT FAILED MODELING FAILED OUTPUT

• Missing Output Command

• Generate Incorrect
Acceleration Command

• Generate Incorrect
Brake Command

• Failure to Enable
Acutation Actions

• Failure in Delivering
Video/Audio Output
to Driver

• Failure in Enabling
Driver Control

• Deliver False Warnings
to Driver

• Failed to Indentify Object

• Incorrect Modeling of
Objects

• Failure in Estimate Correct
Distance

• Failure in Predict
Movement

• Failure in Assess
Road Condition

• Missing

• Improper Data Properties

• Delayed

• Replayed

• Incorrect Correlation

• Incorrect Timestamps

CAUSE
COLLISION

WHEN UNDER
ACC

FAILURE TO
ENABLE ACC

UNDER REASONABLE
CONDITIONS

CAUSE
TRAFFIC CONDITION
GIVEN REASONABLE

CONDITIONS

CAUSE
DISCOMFORT

GIVEN REASONABLE
CONDITIONS

COMPROMISE ACC FUNCTIONALITY

28

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Figure 13. Detailed Threat Analysis on “Collision under ACC” case

COLLISION UNDER ACC

FALSE ACTION ON THROTTLE MISSING ACTION BY BRAKE CONTROLLER

THROTTLE
FAILURE

BRAKE
FAILURE

MODIFIED/
MISSING

COMMAND
TO

THROTTLE

INCORRECT
COMMAND

GENERATED
ON

CONTROLLER

FAILURE IN
GENERATE
COMMAND

ON
CONTROLLER

DELAYED
COMMAND

GENERATION
ON

CONTROLLER

DELAYED
COMMAND

TO
BRAKE

IMPROPER
SPACE/
SPEED

MODELING

SPACE/
SPEED
INFO
MIS-

COMMUNICATED

DELAYED
SPACE/
SPEED

MODELING
RESULTS

SPACE/
SPEED
INFO

DELAYED
COMMUNICATED

DELETED
COMMAND

TO
BRAKE

COMPROMISED
ALGORITHM

SW

INCORRECT
LEADING

CAR
SPEED

PREDICTION

INCORRECT
LEADING

CAR
DISTANCE

ESTIMATION

IMPROPER
ROAD

CONDITION
MODELS

MIS-
COMMUNICATED

MODELING
OUTPUT

DELAYED/
DELETED

MODELING
OUTPUT

COMPROMISED
ALGORITHM

SW

COMPROMISED
SW

SENSING
FAILURE

RISKS ON
INTERNAL COMMS

HW MECHANICAL
FAILURE

MIS-
COMMUNICATED

MODELS
FROM SMART

SENSING
ALG.

(DELAY, FORGERY,
DELETE,

MISCORRELATED)

INCORRECT
OBJECT

RECOGNITION/
DISTANCE

EST.

COMPROMISED
ALGORITHM

SW

CORRUPTED
COMMS.

ROAD
CONDITION

INPUT

INCORRECT
ROAD

CONDITION
INPUT

MISSING/
DELETED

ROAD
CONDITION

INPUT

COMPROMISED
ALGORITHM

SW

CORRUPTED
COMMS.
FRONT
OBJECT

SENSING
INPUT

INCORRECT
FRONT
OBJECT

SENSING
INPUT

MISSING/
DELETED

FRONT
OBJECT

SENSING
INPUT

29

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

Here, we use Figure 13 to summarize our findings. In
addition to the enumeration by a detailed threat analysis
table, an organized tree of threats is created describe
relationship of each threat to how it eventually achieve
the attack goals.

In Figure 13, the individual threats are the leaves in the tree.
They are color-coded by four categories: compromised SW,
sensing failure, risks on internal communications, and HW
mechanical failure. The figure illustrates the process how an
attack could take action on an entry point, manipulating the
system from that leaf upwards to parent nodes, which repre-
senting the consequences caused by this action. Eventually, all
these internal unexpected changes in the system lead to the
final result of compromising ACC function and cause collision.

Here’s how the consequences are defined.

L0: Collision under ACC System, caused by
• L1.1: False action on Throttle, or

The primary concern is that the vehicle doesn’t slow
down in time that causes collision with leading vehicle.
Reduction of speed within a time window is the primary
concern. Failures in generating, or processing, or executing
the appropriate command are the primary causes to
this consequence.

• L1.2: Missing action by brake system
When braking is required to avoid collision, missing the
braking action becomes fatal. This could be caused by
failures in generating, processing, or executing braking
commands by the system.

L1.1: False action non Throttle, caused by
• Throttle mechanical failure

Mechanical problem is out of scope for ACC threat analysis

• Modified or missing command to throttle (on A19)
False information causes throttle to fail to reduce the
speed given required time window. Modification on A19,
or the internal channel could include:

 – Incorrect speed target (not enough reduction, or even
increase speed)

 – Longer time window specified to reduce speed

 – Missing speed reduction command

 – Delayed speed reduction command

• L2.1: Incorrect command generated by A8
This internal needs further analysis. Incorrect command
could be caused by either the input failures, or internal
processing failures.

L1.2: Missing action by brake controller, caused by
• Brake mechanical failure

Mechanical problem is out of scope for ACC threat analysis

• Modified or missing command to brake (on A19)
False information causes brake to fail to brake in time.
Properties on A19 that could lead to the consequence
could be either command been delayed or deleted.
Further, if there is a time window specified to take brak-
ing action, a malicious change to prolong the time window
information will cause the failure of braking properly.

• L2.2: Failure in generating braking command by A8
This internal needs further analysis. Incorrect command
could be caused by either the input failures, or internal
processing failures.

• L2.3: Delayed in generating braking command by A8
This internal needs further analysis. Incorrect command
could be caused by either the input failures, or internal
processing failures.

L2.1, L2.2, L2.3: Internal: Incorrect command generated by
A8, caused by
• Miscommunication of target speed information input to

A8 (input interface)

 – Missing speed change, or time window for
action restriction

 – Increase of target speed to an undesirable level

 – Delayed speed change command

• L3.1: Incorrect space/speed modeling results from A5

 – This is an internal condition that needs further
analysis. The desirable outcome by the attacker is
to manipulate A5 or the input interface of A5 so that
the output speed change command is manipulated
to achieve the properties as describe in the above:
increase of target speed to an undesirable level or
missing speed reduction when it needs to.

• L3.2: Delayed space/speed modeling results from A5

 – Similarly, this is an internal condition that needs further
analysis. A5 or input interfaces are manipulated in such
a way that the output of speed reduction command is
delayed.

30

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

L3.1: Internal: Incorrect space/speed modeling results
from A5, caused by
• Compromised ADAS brain fusion algorithm SW

This can be achieved by malware infection. Once
the fusion algorithm SW is taken by the attacker, its
behavior is completely controlled by the attacker.
Therefore, the output of space or speed modeling
is by attacker’s choice completely.

• Manipulation on O5.3, for output properties

 – Properties: speed value, space value,
availability, timeliness

• L4.1: Internal: incorrect modeling of current
condition, including

 – L4.1.1: Incorrect leading car speed prediction

 – L4.1.2: Incorrect leading car distance estimation

 – L4.1.3: Improper road condition models

 – Combination of above

L3.2: Internal: Delayed space/speed modeling results
from A5, caused by
• Compromised ADAS brain fusion algorithm SW

See L3.1 for further details

• Manipulation on O5.3, for output properties

 – Property: delay output

• L4.2: Internal: incorrect modeling of current condition,
that leads to delayed completion
L4.1.1, L4.1.2, L4.1.3 could lead to delayed output as well

L4.1.1: Internal: Incorrect leading car speed prediction
L4.1.2: Incorrect leading car distance estimation
• Compromised ADAS brain fusion algorithm SW on A5

• Input failures on C5.1

 – Models delayed, forged, deleted, or miscorrelated

• Input failures on C5.2

 – CAN bus problem to provide correct information on the
vehicle speed status

• L5.1: Internal: Incorrect object recognition or distance
estimation from A4

L4.1.3: Improper road condition models
• Compromised ADAS brain fusion algorithm SW on A5

• Incorrect road condition sensing input

 – E.g., incorrect sensing that misses “downhill” condition

 – Lack of weather info to indicate slippery road on
a rainy day

 – This could be achieve by compromising sensors di-
rectly, or by compromising external weather source

• Missing road condition information

 – E.g., missing “downhill information”

• Corrupted communication to C5.3 and C5.4

 – Similar properties of sensing data or weather
information are changed

• Input failures on C5.2

 – CAN bus problem to provide correct information
on the vehicle speed status

• L5.1: Internal: Incorrect object recognition or distance
estimation from A4

31

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

L5.1: Internal: Incorrect object recognition or distance
estimation from A4
• Compromised SW: smart sensing platform (A4) with

infected software
Output of speed modeling can be of attacker’s choice

• Compromised communication
Input channels are compromised (C4.1, C4.2, and C4.3).
Properties could directly affect the outcome of object
recognition, and object distance estimation, could include:

 – Availability of frames, or lidar, or radar signals that
illustrates current condition

 – Content of input information

 » Maliciously modified, or inserted with forged
information

 – Frequency of input information

 – Correlation of these three sensing data streams that
directly impact the outcome of the modeling

• Compromised sensing

 – A1: front camera compromised to produce
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the lens that feed in
as sensing input

 » Compromised camera FW/SW that produces
undesirable output

 » HW compromise on A1, mechanical errors

 » Failed calibration

 – A2: Lidar sensor compromised to produce
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the input interface to be fed in

 » Compromised sensor FW/SW that produces
undesirable output

 » HW compromised on A2, mechanical errors

 » Failed calibration

 – A3: Radar sensor compromised to produce
compromised sensing content

 » Availability, legitimacy of content, in time

 » Faked environment on the input interface to be fed in

 » Compromised sensor FW/SW that produces
undesirable output

 » HW compromised on A3, mechanical errors

 » Failed calibration

Discussion on Other Three Threats
As described above, besides collision caused under ACC
function, there are three other types of threats:

• Failure to enable ACC under reasonable conditions

• Cause Traffic condition given reasonable conditions

• Cause discomfort given reasonable conditions

These three threats are real to users, although not necessarily
directly related to driving safety. Here we briefly discuss these
threats, especially some of the detailed actions by attacker
that are not covered in collision threat analysis.

Failure to Enable ACC
Hypothetically, the user input the desirable speed through
the existing input interface to trigger ACC function. The ACC
system then could take the input, launch the software mod-
ule, and wake up sensors. The system could be attacked via
threats on

• User’s input

• Sensor calibration error

• ACC function testing

• ACC function testing output

Under a typical driving environment, such as

• reasonable leading vehicle distance,

• past speed dynamics is reasonable,

• the road is not too slippery, and

• visibility is good enough for sensing,

32

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

The ACC can be successfully enabled, after the ACC system
runs a round or multiple rounds of quick test. Hence, the
threats posed by attacker that can fail the launch of ACC
involve actions to cause the system to produce output that
indicates failure of one or more of the above 4 conditions.

Overall, the threats can be summarized in Figure 14.

Attack actions on Internal ACC testing procedure can be very
similar to the actions taken to achieve collision. Similar threat
analysis for collision is applicable here. The difference lies in
that the same vulnerabilities are utilized and information is
manipulated differently to convince the system that it is too
dangerous, or unreasonable to launch ACC now, even though
the current driving condition is normal. Hence, the goals are
opposite to some of the attacking goals in the collision case.

Failed to launch ACC could also be achieved by failure in ac-
cepting user’s input, or errors in user input. Attacker could
take action on user’s input interface to delete, delay, replay,
modify, or insert fake command from user. The attack surface
could be on the direct external interface, or the module that
process the input command, or the internal communication
channel to delivers the command to ACC system.

Failed to launch ACC could also be achieved by failing the sen-
sor calibration. During the process of system launching, the
necessary sensors need calibration before they can be used to
capture sensing data for ACC function. Failure in enabling sen-
sors properly via calibration can directly fail ACC function and
system. The attacking surface could be on the direct attacks
in sensor mechanics, or the module that handles calibration,
or the internal communication channels that pass information
between modules for the purpose of calibration, or the output
channels to confirm success of calibration.

Finally, output confirmation could be disrupted by the
attackers that could effectively disable the launch of
the ACC system.

Figure 14. Threat Analysis—“Failure to Enable ACC” case

FAILED TO
CALCULATE

REASONABLE
DISTANCE

TO LEADING
VEHICLE

FAILED TO
IDENTIFY

REASONABLE
HISTORICAL

SPEED DYNAMICS
(PATTERNS)

FAILED TO CONFIRM
REASONABLE

ROAD CONDITION
(REPORT TOO

SLIPPERY,
OR TOO WINDY)

FAILED TO
CONFIRM THAT

ACC SYSTEM
HAS GOOD
VISIBILITY
ON ROAD

FAILURE IN LAUNCHING ACC

FAILED INPUT
FROM

USER UI

FAILED
SENSING

CALIBRATION

FAILED INTERNAL
ACC TESTING
PROCEDURE

FAILED OUTPUT
TO CONFIRM

SUCCESS LAUNCH

33

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

34

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

35

Advanced Driver Assistant System:
Threats, Requirements, and Security Solutions

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

 Copyright © 2015 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other
countries. *Other names and brands may be claimed as the property of others. 0115/MW/HBD/PDF 331817-001US

